Answer
Verified
429.9k+ views
Hint:To solve the expression for logarithmic terms, we should know the logarithmic properties like multiplication division and when we remove the log term then the equation R.H.S will get the term of “e” and the whole expression will goes to the power the this term “e”, value of this function is 2.71828, if needed then we can solve it by using this value.
Formulae Used:
\[ \Rightarrow \ln a - \ln b = \ln \dfrac{a}{b}\]
\[
\Rightarrow \ln x = y \\
then \\
\Rightarrow x = {e^y} \\
\]
Complete step by step solution:
The given question needs to solve the expression \[\ln x - \ln 2 = 0\]
Using the property of subtraction in logarithm we can say:
\[ \Rightarrow \ln a - \ln b = \ln \dfrac{a}{b}\]
Using this property in our question we can write the given expression as:
\[
\Rightarrow \ln x - \ln 2 = 0 \\
\Rightarrow \ln \dfrac{x}{2} = 0 \\
\]
Now using the second property which is when you remove the logarithm function then the expression on the second hand of equation will goes to the power of “e”, this property can be written as:
\[
\Rightarrow \ln x = y \\
then \\
\Rightarrow x = {e^y} \\
\]
Using this property in our question we can solve as:
\[
\Rightarrow \ln \dfrac{x}{2} = 0 \\
\Rightarrow \dfrac{x}{2} = {e^0} \\
\Rightarrow \dfrac{x}{2} = 1 \\
\Rightarrow x = 1 \times 2 = 2 \\
\]
Hence we obtained the final answer for the given expression.
Additional Information: The given expression needs to be solved as steps are used above, these are standard steps and need to be used for getting the final answer, the final answer can be cross checked by putting the value of the variable in the equation given in question.
Note: Here the given expression can also be solved by differentiating the equation, on differentiating the log term will be simplified to the normal integer and variable, here using differentiation the final answer would not be changed, you will obtain the same result as we get here.
Formulae Used:
\[ \Rightarrow \ln a - \ln b = \ln \dfrac{a}{b}\]
\[
\Rightarrow \ln x = y \\
then \\
\Rightarrow x = {e^y} \\
\]
Complete step by step solution:
The given question needs to solve the expression \[\ln x - \ln 2 = 0\]
Using the property of subtraction in logarithm we can say:
\[ \Rightarrow \ln a - \ln b = \ln \dfrac{a}{b}\]
Using this property in our question we can write the given expression as:
\[
\Rightarrow \ln x - \ln 2 = 0 \\
\Rightarrow \ln \dfrac{x}{2} = 0 \\
\]
Now using the second property which is when you remove the logarithm function then the expression on the second hand of equation will goes to the power of “e”, this property can be written as:
\[
\Rightarrow \ln x = y \\
then \\
\Rightarrow x = {e^y} \\
\]
Using this property in our question we can solve as:
\[
\Rightarrow \ln \dfrac{x}{2} = 0 \\
\Rightarrow \dfrac{x}{2} = {e^0} \\
\Rightarrow \dfrac{x}{2} = 1 \\
\Rightarrow x = 1 \times 2 = 2 \\
\]
Hence we obtained the final answer for the given expression.
Additional Information: The given expression needs to be solved as steps are used above, these are standard steps and need to be used for getting the final answer, the final answer can be cross checked by putting the value of the variable in the equation given in question.
Note: Here the given expression can also be solved by differentiating the equation, on differentiating the log term will be simplified to the normal integer and variable, here using differentiation the final answer would not be changed, you will obtain the same result as we get here.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE