Answer
Verified
428.4k+ views
Hint:To solve the expression for logarithmic terms, we should know the logarithmic properties like multiplication division and when we remove the log term then the equation R.H.S will get the term of “e” and the whole expression will goes to the power the this term “e”, value of this function is 2.71828, if needed then we can solve it by using this value.
Formulae Used:
\[ \Rightarrow \ln a - \ln b = \ln \dfrac{a}{b}\]
\[
\Rightarrow \ln x = y \\
then \\
\Rightarrow x = {e^y} \\
\]
Complete step by step solution:
The given question needs to solve the expression \[\ln x - \ln 2 = 0\]
Using the property of subtraction in logarithm we can say:
\[ \Rightarrow \ln a - \ln b = \ln \dfrac{a}{b}\]
Using this property in our question we can write the given expression as:
\[
\Rightarrow \ln x - \ln 2 = 0 \\
\Rightarrow \ln \dfrac{x}{2} = 0 \\
\]
Now using the second property which is when you remove the logarithm function then the expression on the second hand of equation will goes to the power of “e”, this property can be written as:
\[
\Rightarrow \ln x = y \\
then \\
\Rightarrow x = {e^y} \\
\]
Using this property in our question we can solve as:
\[
\Rightarrow \ln \dfrac{x}{2} = 0 \\
\Rightarrow \dfrac{x}{2} = {e^0} \\
\Rightarrow \dfrac{x}{2} = 1 \\
\Rightarrow x = 1 \times 2 = 2 \\
\]
Hence we obtained the final answer for the given expression.
Additional Information: The given expression needs to be solved as steps are used above, these are standard steps and need to be used for getting the final answer, the final answer can be cross checked by putting the value of the variable in the equation given in question.
Note: Here the given expression can also be solved by differentiating the equation, on differentiating the log term will be simplified to the normal integer and variable, here using differentiation the final answer would not be changed, you will obtain the same result as we get here.
Formulae Used:
\[ \Rightarrow \ln a - \ln b = \ln \dfrac{a}{b}\]
\[
\Rightarrow \ln x = y \\
then \\
\Rightarrow x = {e^y} \\
\]
Complete step by step solution:
The given question needs to solve the expression \[\ln x - \ln 2 = 0\]
Using the property of subtraction in logarithm we can say:
\[ \Rightarrow \ln a - \ln b = \ln \dfrac{a}{b}\]
Using this property in our question we can write the given expression as:
\[
\Rightarrow \ln x - \ln 2 = 0 \\
\Rightarrow \ln \dfrac{x}{2} = 0 \\
\]
Now using the second property which is when you remove the logarithm function then the expression on the second hand of equation will goes to the power of “e”, this property can be written as:
\[
\Rightarrow \ln x = y \\
then \\
\Rightarrow x = {e^y} \\
\]
Using this property in our question we can solve as:
\[
\Rightarrow \ln \dfrac{x}{2} = 0 \\
\Rightarrow \dfrac{x}{2} = {e^0} \\
\Rightarrow \dfrac{x}{2} = 1 \\
\Rightarrow x = 1 \times 2 = 2 \\
\]
Hence we obtained the final answer for the given expression.
Additional Information: The given expression needs to be solved as steps are used above, these are standard steps and need to be used for getting the final answer, the final answer can be cross checked by putting the value of the variable in the equation given in question.
Note: Here the given expression can also be solved by differentiating the equation, on differentiating the log term will be simplified to the normal integer and variable, here using differentiation the final answer would not be changed, you will obtain the same result as we get here.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE