Answer
Verified
428.4k+ views
Hint:Use logarithm property ${x^n} = y$ to get the answer
To solve this type of problem, we will have to use special logarithmic properties otherwise we won't be able to solve them. This is because operations in log are not done like the conventional way. So, in order to solve this question, we will use the property ${\log _x}y = n \to {x^n} = y$to solve. Doing this we will get ${3^4} = x$ which will in the end give $x = 81$as the answer.
Complete step by step solution:
The given question we have is ${\log _3}x = 4$
To solve this problem, we will use a special property of logarithm, which states that:-
If there exists a log with base x and argument y. And if the value of that log y base x is equal to another number which may be a constant or variable lets say “n”. Then this particular equation can be written as x raised to the power n equals to y. If we represent it mathematically, it will look like:-
$
{\log _x}y = n \\
\to {x^n} = y \\
$
Both the steps are the same and you can use any one of it anytime.
So therefore, when we use this step on our given equation, we will get:-
$
{\log _3}x = 4 \\
\to {3^4} = x \\
$
Now, we know that.
${3^4} = 3 \times 3 \times 3 \times 3$
Which equals to 81
Therefore, $x = 81$
And this is our solution for the question.
Note: Please remember the base of the log is always the base of the number which is raised to the power. The argument of the log is the value which is equal to the raised value of the base. So, in any case, don’t confuse yourself by exchanging the positions of base and argument. In that case you will get a wrong answer.
To solve this type of problem, we will have to use special logarithmic properties otherwise we won't be able to solve them. This is because operations in log are not done like the conventional way. So, in order to solve this question, we will use the property ${\log _x}y = n \to {x^n} = y$to solve. Doing this we will get ${3^4} = x$ which will in the end give $x = 81$as the answer.
Complete step by step solution:
The given question we have is ${\log _3}x = 4$
To solve this problem, we will use a special property of logarithm, which states that:-
If there exists a log with base x and argument y. And if the value of that log y base x is equal to another number which may be a constant or variable lets say “n”. Then this particular equation can be written as x raised to the power n equals to y. If we represent it mathematically, it will look like:-
$
{\log _x}y = n \\
\to {x^n} = y \\
$
Both the steps are the same and you can use any one of it anytime.
So therefore, when we use this step on our given equation, we will get:-
$
{\log _3}x = 4 \\
\to {3^4} = x \\
$
Now, we know that.
${3^4} = 3 \times 3 \times 3 \times 3$
Which equals to 81
Therefore, $x = 81$
And this is our solution for the question.
Note: Please remember the base of the log is always the base of the number which is raised to the power. The argument of the log is the value which is equal to the raised value of the base. So, in any case, don’t confuse yourself by exchanging the positions of base and argument. In that case you will get a wrong answer.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE