
How do you solve ${{x}^{2}}-6x+25=0$?
Answer
552.3k+ views
Hint: We have been given a quadratic equation of $x$ as ${{x}^{2}}-6x+25=0$. We use the quadratic formula to solve the value of the $x$. we have the solution in the form of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ for general equation of $a{{x}^{2}}+bx+c=0$. We put the values and find the solution.
Complete step by step solution:
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. This is the quadratic equation solving method. The root part $\sqrt{{{b}^{2}}-4ac}$ of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ is called the discriminant of the equation.
In the given equation we have ${{x}^{2}}-6x+25=0$. The values of a, b, c is $1,-6,25$ respectively.
We put the values and get $x$ as \[x=\dfrac{-\left( -6 \right)\pm \sqrt{{{\left( -6 \right)}^{2}}-4\times 25\times 1}}{2\times 1}=\dfrac{6\pm \sqrt{-64}}{2}=\dfrac{6\pm 8i}{2}=3\pm 4i\]
The roots of the equation are imaginary numbers. So, values of x are $x=3\pm 4i$.
The discriminant value being negative square, we get the imaginary numbers root values.
In this case the value of $D=\sqrt{{{b}^{2}}-4ac}$ is non-square. ${{b}^{2}}-4ac={{\left( -6 \right)}^{2}}-4\times 25\times 1=-64$.
This is a negative square value. That’s why the roots are imaginary.
Note: We have been given the equation ${{x}^{2}}-2x-4=0$. We form the square part in ${{x}^{2}}-6x+25$.
The square form of subtraction of two numbers be ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$.
We have ${{x}^{2}}-6x+25={{x}^{2}}-2\times x\times 3+{{3}^{2}}+16$.
Forming the square, we get ${{x}^{2}}-6x+25={{\left( x-3 \right)}^{2}}+{{4}^{2}}$.
We get ${{\left( x-3 \right)}^{2}}+{{4}^{2}}=0$. Taking solution, we get
$\begin{align}
& {{\left( x-3 \right)}^{2}}+{{4}^{2}}=0 \\
& \Rightarrow {{\left( x-3 \right)}^{2}}=-{{4}^{2}} \\
& \Rightarrow \left( x-3 \right)=\pm 4i \\
& \Rightarrow x=3\pm 4i \\
\end{align}$.
Thus, the solution of the equation ${{x}^{2}}-2x-4=0$ is $x=3\pm 4i$.
Complete step by step solution:
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. This is the quadratic equation solving method. The root part $\sqrt{{{b}^{2}}-4ac}$ of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ is called the discriminant of the equation.
In the given equation we have ${{x}^{2}}-6x+25=0$. The values of a, b, c is $1,-6,25$ respectively.
We put the values and get $x$ as \[x=\dfrac{-\left( -6 \right)\pm \sqrt{{{\left( -6 \right)}^{2}}-4\times 25\times 1}}{2\times 1}=\dfrac{6\pm \sqrt{-64}}{2}=\dfrac{6\pm 8i}{2}=3\pm 4i\]
The roots of the equation are imaginary numbers. So, values of x are $x=3\pm 4i$.
The discriminant value being negative square, we get the imaginary numbers root values.
In this case the value of $D=\sqrt{{{b}^{2}}-4ac}$ is non-square. ${{b}^{2}}-4ac={{\left( -6 \right)}^{2}}-4\times 25\times 1=-64$.
This is a negative square value. That’s why the roots are imaginary.
Note: We have been given the equation ${{x}^{2}}-2x-4=0$. We form the square part in ${{x}^{2}}-6x+25$.
The square form of subtraction of two numbers be ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$.
We have ${{x}^{2}}-6x+25={{x}^{2}}-2\times x\times 3+{{3}^{2}}+16$.
Forming the square, we get ${{x}^{2}}-6x+25={{\left( x-3 \right)}^{2}}+{{4}^{2}}$.
We get ${{\left( x-3 \right)}^{2}}+{{4}^{2}}=0$. Taking solution, we get
$\begin{align}
& {{\left( x-3 \right)}^{2}}+{{4}^{2}}=0 \\
& \Rightarrow {{\left( x-3 \right)}^{2}}=-{{4}^{2}} \\
& \Rightarrow \left( x-3 \right)=\pm 4i \\
& \Rightarrow x=3\pm 4i \\
\end{align}$.
Thus, the solution of the equation ${{x}^{2}}-2x-4=0$ is $x=3\pm 4i$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

