Answer
Verified
429k+ views
Hint: An exponent that is written in a special way is known as a logarithm. Logarithm functions are just opposite or inverse of exponential functions. We can easily express any exponential function in a logarithm form. Similarly, all the logarithm functions can be easily rewritten in exponential form. In order to solve this equation, we have to use some of the logarithm function properties.
Complete step by step solution:
Here, in this question we have to solve $\ln x - \ln 3 = 2$ for the value of $x$. This question deals with logarithm functions, which are just the inverse of exponential functions. In order to solve this question, we will have to make use of logarithm function properties.Given is, $\ln x - \ln 3 = 2$.
We know that one of the logarithm function properties is, logarithm quotient rule. The logarithm quotient rule says that if ${\log _b}\left( {\dfrac{x}{y}} \right) = {\log _b}\left( x \right) - {\log _b}\left( y \right)$. By making use of the same property in the given equation we get,
$
\ln x - \ln 3 = 2 \\
\Rightarrow \ln \left( {\dfrac{x}{3}} \right) = 2 \\
$
Same as, ${\ln _e}\left( {\dfrac{x}{3}} \right) = 2$.
Now, we take exponential on both the sides of the equation and we get,
$
\Rightarrow \dfrac{x}{3} = {e^2} \\
\therefore x = 3{e^2} \\ $
Hence, the value of $x$ in $\ln x - \ln 3 = 2$ is $3{e^2}$.
Note: This problem and similar to these can very easily be solved by making use of different logarithm properties. Students should keep in mind the properties of logarithmic functions. Logarithms are useful when we want to work with large numbers. Logarithm has many uses in real life, such as in electronics, acoustics, earthquake analysis and population prediction. When the base of common logarithm is $10$ then, the base of a natural logarithm is number $e$.
Complete step by step solution:
Here, in this question we have to solve $\ln x - \ln 3 = 2$ for the value of $x$. This question deals with logarithm functions, which are just the inverse of exponential functions. In order to solve this question, we will have to make use of logarithm function properties.Given is, $\ln x - \ln 3 = 2$.
We know that one of the logarithm function properties is, logarithm quotient rule. The logarithm quotient rule says that if ${\log _b}\left( {\dfrac{x}{y}} \right) = {\log _b}\left( x \right) - {\log _b}\left( y \right)$. By making use of the same property in the given equation we get,
$
\ln x - \ln 3 = 2 \\
\Rightarrow \ln \left( {\dfrac{x}{3}} \right) = 2 \\
$
Same as, ${\ln _e}\left( {\dfrac{x}{3}} \right) = 2$.
Now, we take exponential on both the sides of the equation and we get,
$
\Rightarrow \dfrac{x}{3} = {e^2} \\
\therefore x = 3{e^2} \\ $
Hence, the value of $x$ in $\ln x - \ln 3 = 2$ is $3{e^2}$.
Note: This problem and similar to these can very easily be solved by making use of different logarithm properties. Students should keep in mind the properties of logarithmic functions. Logarithms are useful when we want to work with large numbers. Logarithm has many uses in real life, such as in electronics, acoustics, earthquake analysis and population prediction. When the base of common logarithm is $10$ then, the base of a natural logarithm is number $e$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE