How does one solve ${\log _3}15$ ?
Answer
Verified
441.9k+ views
Hint:For solving this particular problem we will use ${\log _b}a = \dfrac{{{{\log }_x}a}}{{{{\log }_x}b}}$ , change of base rule may be used if $a$ and $b$ are greater than zero and not adequate to one , and $x$ is larger than zero . For simplifying the equation , we will use the logarithm property that is $\log ab = \log a + \log b$ .
Formula used:
We used logarithm property i.e., The change of base rule may be used if $a$
and $b$ are greater than zero and not adequate to one , and $x$ is larger than zero .
${\log _b}a = \dfrac{{{{\log }_x}a}}{{{{\log }_x}b}}$
and $\log ab = \log a + \log b$ .
Complete solution step by step:
We have to find the value of ${\log _3}15$ ,
The change of base rule may be used if $a$
and $b$ are greater than zero and not adequate to one , and $x$ is larger than zero .
${\log _b}a = \dfrac{{{{\log }_x}a}}{{{{\log }_x}b}}$
Now, substitute values for the variables within the change of base formula, using $x = 10$.
${\log _3}15 = \dfrac{{{{\log }_{10}}15}}{{{{\log }_{10}}3}}$
Using logarithm property that is $\log ab = \log a + \log b$ ,
We can write ,
$
\Rightarrow {\log _3}15 = \dfrac{{{{\log }_{10}}5 + {{\log }_{10}}3}}{{{{\log }_{10}}3}} \\
\Rightarrow {\log _3}15 = \dfrac{{{{\log }_{10}}5}}{{{{\log }_{10}}3}} + 1 \\
$
Since $\dfrac{{{{\log }_{10}}5}}{{{{\log }_{10}}3}} = 1.46497352$ ,
Therefore , we get the following result ,
\[
\Rightarrow {\log _3}15 = 1.46497352 + 1 \\
\Rightarrow {\log _3}15 = 2.46497352 \\
\]
The result is shown in multiple forms.
Exact Form:
${\log _3}15 = \dfrac{{{{\log }_{10}}15}}{{{{\log }_{10}}3}}$
Decimal Form:
\[{\log _3}15 = 2.46497352\]
Note: The logarithm function says $\log x$ is only defined when $x$ is greater than zero. While defining logarithm function one should remember that the base of the log must be a positive real number and not equals to one . At the end we must recall that the logarithm function says $\log x$ is only defined when $x$ is greater than zero. While performing logarithm properties we have remember certain conditions , our end result must satisfy domain of that logarithm
Formula used:
We used logarithm property i.e., The change of base rule may be used if $a$
and $b$ are greater than zero and not adequate to one , and $x$ is larger than zero .
${\log _b}a = \dfrac{{{{\log }_x}a}}{{{{\log }_x}b}}$
and $\log ab = \log a + \log b$ .
Complete solution step by step:
We have to find the value of ${\log _3}15$ ,
The change of base rule may be used if $a$
and $b$ are greater than zero and not adequate to one , and $x$ is larger than zero .
${\log _b}a = \dfrac{{{{\log }_x}a}}{{{{\log }_x}b}}$
Now, substitute values for the variables within the change of base formula, using $x = 10$.
${\log _3}15 = \dfrac{{{{\log }_{10}}15}}{{{{\log }_{10}}3}}$
Using logarithm property that is $\log ab = \log a + \log b$ ,
We can write ,
$
\Rightarrow {\log _3}15 = \dfrac{{{{\log }_{10}}5 + {{\log }_{10}}3}}{{{{\log }_{10}}3}} \\
\Rightarrow {\log _3}15 = \dfrac{{{{\log }_{10}}5}}{{{{\log }_{10}}3}} + 1 \\
$
Since $\dfrac{{{{\log }_{10}}5}}{{{{\log }_{10}}3}} = 1.46497352$ ,
Therefore , we get the following result ,
\[
\Rightarrow {\log _3}15 = 1.46497352 + 1 \\
\Rightarrow {\log _3}15 = 2.46497352 \\
\]
The result is shown in multiple forms.
Exact Form:
${\log _3}15 = \dfrac{{{{\log }_{10}}15}}{{{{\log }_{10}}3}}$
Decimal Form:
\[{\log _3}15 = 2.46497352\]
Note: The logarithm function says $\log x$ is only defined when $x$ is greater than zero. While defining logarithm function one should remember that the base of the log must be a positive real number and not equals to one . At the end we must recall that the logarithm function says $\log x$ is only defined when $x$ is greater than zero. While performing logarithm properties we have remember certain conditions , our end result must satisfy domain of that logarithm
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE