i) What must be added to \[3\dfrac{3}{4}\] to get \[4\dfrac{2}{8}\]?
ii) What must be subtracted from \[4\dfrac{1}{4}\] to get \[2\dfrac{3}{{12}}\]?
Answer
Verified
408k+ views
Hint: Here we have to find the sum and difference between the given data. Here the data is in the form of a fraction. Since the given data is in fraction the value of the denominator is different so we find the LCM for both the denominators and then we add the numbers. Hence, we obtain the required solution for the given question.
Complete step by step solution:
I.We apply the arithmetic operations on the fractions. Here in this question, we add and subtract the two fractions. The LCM is the least common multiple. The LCM will be common for both the numbers.
Now we will consider the first question
What must be added to \[3\dfrac{3}{4}\] to get \[4\dfrac{2}{8}\]
Let we consider the unknown number as x
The question is written in the form of algebraic equation as
\[ \Rightarrow 3\dfrac{3}{4} + x = 4\dfrac{2}{8}\]
Convert the mixed fractions into improper fractions we have
\[ \Rightarrow \dfrac{{15}}{4} + x = \dfrac{{34}}{8}\]
Take \[\dfrac{{15}}{4}\] to RHS we have
\[ \Rightarrow x = \dfrac{{34}}{8} - \dfrac{{15}}{4}\]
The LCM for the numbers 8 and 4 is 8.
So we have
\[ \Rightarrow x = \dfrac{{\dfrac{{34}}{8} \times 8 - \dfrac{{15}}{4} \times 8}}{8}\]
On simplifying we have
\[ \Rightarrow x = \dfrac{{34 - 30}}{8}\]
\[ \Rightarrow x = \dfrac{4}{8}\]
On dividing the both numerator and the denominator by 4 we have
\[ \Rightarrow x = \dfrac{1}{2}\]
So, the correct answer is “\[ x = \dfrac{1}{2}\]”.
II.Now we will consider the second question
What must be subtracted from \[4\dfrac{1}{4}\] to get \[2\dfrac{3}{{12}}\]
Let we consider the unknown number as x
The question is written in the form of algebraic equation as
\[ \Rightarrow 4\dfrac{1}{4} - x = 2\dfrac{3}{{12}}\]
Convert the mixed fractions into improper fractions we have
\[ \Rightarrow \dfrac{{17}}{4} - x = \dfrac{{27}}{{12}}\]
Take \[\dfrac{{17}}{4}\] to RHS we have
\[ \Rightarrow - x = \dfrac{{27}}{{12}} - \dfrac{{17}}{4}\]
The LCM for the numbers 12 and 4 is 12.
So we have
\[ \Rightarrow - x = \dfrac{{\dfrac{{27}}{{12}} \times 12 - \dfrac{{17}}{4} \times 12}}{{12}}\]
On simplifying we have
\[ \Rightarrow - x = \dfrac{{27 - 51}}{{12}}\]
\[ \Rightarrow - x = \dfrac{{ - 24}}{{12}}\]
On dividing the both numerator and the denominator by 12 we have
\[ \Rightarrow - x = - 2\]
On cancelling the minus we have
\[ \Rightarrow x = 2\]
So, the correct answer is “ x = 2”.
Note: While adding the two fractions we need to check the values of the denominator, if both denominators are having the same value then we can add the numerators. Suppose if the fractions have different denominators, we have to take LCM for the denominators and we simplify for further.
Complete step by step solution:
I.We apply the arithmetic operations on the fractions. Here in this question, we add and subtract the two fractions. The LCM is the least common multiple. The LCM will be common for both the numbers.
Now we will consider the first question
What must be added to \[3\dfrac{3}{4}\] to get \[4\dfrac{2}{8}\]
Let we consider the unknown number as x
The question is written in the form of algebraic equation as
\[ \Rightarrow 3\dfrac{3}{4} + x = 4\dfrac{2}{8}\]
Convert the mixed fractions into improper fractions we have
\[ \Rightarrow \dfrac{{15}}{4} + x = \dfrac{{34}}{8}\]
Take \[\dfrac{{15}}{4}\] to RHS we have
\[ \Rightarrow x = \dfrac{{34}}{8} - \dfrac{{15}}{4}\]
The LCM for the numbers 8 and 4 is 8.
So we have
\[ \Rightarrow x = \dfrac{{\dfrac{{34}}{8} \times 8 - \dfrac{{15}}{4} \times 8}}{8}\]
On simplifying we have
\[ \Rightarrow x = \dfrac{{34 - 30}}{8}\]
\[ \Rightarrow x = \dfrac{4}{8}\]
On dividing the both numerator and the denominator by 4 we have
\[ \Rightarrow x = \dfrac{1}{2}\]
So, the correct answer is “\[ x = \dfrac{1}{2}\]”.
II.Now we will consider the second question
What must be subtracted from \[4\dfrac{1}{4}\] to get \[2\dfrac{3}{{12}}\]
Let we consider the unknown number as x
The question is written in the form of algebraic equation as
\[ \Rightarrow 4\dfrac{1}{4} - x = 2\dfrac{3}{{12}}\]
Convert the mixed fractions into improper fractions we have
\[ \Rightarrow \dfrac{{17}}{4} - x = \dfrac{{27}}{{12}}\]
Take \[\dfrac{{17}}{4}\] to RHS we have
\[ \Rightarrow - x = \dfrac{{27}}{{12}} - \dfrac{{17}}{4}\]
The LCM for the numbers 12 and 4 is 12.
So we have
\[ \Rightarrow - x = \dfrac{{\dfrac{{27}}{{12}} \times 12 - \dfrac{{17}}{4} \times 12}}{{12}}\]
On simplifying we have
\[ \Rightarrow - x = \dfrac{{27 - 51}}{{12}}\]
\[ \Rightarrow - x = \dfrac{{ - 24}}{{12}}\]
On dividing the both numerator and the denominator by 12 we have
\[ \Rightarrow - x = - 2\]
On cancelling the minus we have
\[ \Rightarrow x = 2\]
So, the correct answer is “ x = 2”.
Note: While adding the two fractions we need to check the values of the denominator, if both denominators are having the same value then we can add the numerators. Suppose if the fractions have different denominators, we have to take LCM for the denominators and we simplify for further.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How many ounces are in 500 mL class 8 maths CBSE
Which king started the organization of the Kumbh fair class 8 social science CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
Advantages and disadvantages of science