Answer
Verified
441.6k+ views
Hint: Here, we are required to find the values of the above parts when it is given that 1, \[\omega \], \[{\omega ^2}\] are cube the roots of unity. We know that the sum of three cube roots of unity is 0. We will expand the given expressions and take the like terms common and finally, substituting the fact that \[1 + \omega + {\omega ^2} = 0\], will help us reach the required answer.
Formula Used:
We will use the following formulas:
1.\[{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\]
2.\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
3.\[1 + \omega + {\omega ^2} = 0\]
Complete step-by-step answer:
According to the question, if 1, \[\omega \], \[{\omega ^2}\] are cube the roots of unity.
As sum of three cube roots of unity is 0, so \[1 + \omega + {\omega ^2} = 0\]
\[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3}\]
Now, using the formula \[{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\], we get
Let \[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3} = S\]
\[S = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} + {a^3} + 3{a^2}b\omega + 3a{b^2}{\omega ^2} + {b^3} + {a^3} + 3{a^2}b{\omega ^2} + 3a{b^2}\omega + {b^3}\]
Taking the like terms common, we get,
\[ \Rightarrow S = 3{a^3} + 3{a^2}b\left( {1 + \omega + {\omega ^2}} \right) + 3a{b^2}\left( {1 + \omega + {\omega ^2}} \right) + 3{b^3}\]
But,\[1 + \omega + {\omega ^2} = 0\], therefore
\[ \Rightarrow S = 3{a^3} + 3{a^2}b\left( 0 \right) + 3a{b^2}\left( 0 \right) + 3{b^3}\]
\[ \Rightarrow S = 3{a^3} + 3{b^3} = 3\left( {{a^3} + {b^3}} \right)\]
Hence, the value of \[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3} = 3\left( {{a^3} + {b^3}} \right)\]
\[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2}\]
Let \[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2} = T\]
Using the formula \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\], we get
\[ \Rightarrow T = = {a^2} + 4ab + 4{b^2} + {a^2}\omega + 4ab + 4{b^2}{\omega ^2} + {a^2}{\omega ^2} + 4ab + 4{b^2}\omega \]
Taking the like terms common, we get,
\[ \Rightarrow T = {a^2}\left( {1 + \omega + {\omega ^2}} \right) + 12ab + 4{b^2}\left( {1 + \omega + {\omega ^2}} \right)\]
But, \[1 + \omega + {\omega ^2} = 0\], hence,
\[ \Rightarrow T = {a^2}\left( 0 \right) + 12ab + 4{b^2}\left( 0 \right)\]
\[ \Rightarrow T = 12ab\]
Hence, the value of \[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2} = 12ab\]
Note: In this question we have assumed that \[1 + \omega + {\omega ^2} = 0\]. We can prove this equation as shown below.
Let us assume the cube root of unity or 1 as:
\[\sqrt[3]{1} = z\]
Cubing both sides, we get
\[ \Rightarrow 1 = {z^3}\]
Or
\[ \Rightarrow {z^3} - 1 = 0\]
Now, using the formula \[\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\], we get
\[ \Rightarrow \left( {z - 1} \right)\left( {{z^2} + z + 1} \right) = 0\]
Therefore, either \[\left( {z - 1} \right) = 0\]
\[ \Rightarrow z = 1\]
Or, \[\left( {{z^2} + z + 1} \right) = 0\]
Comparing with \[\left( {a{x^2} + bx + c} \right) = 0\]
Here, \[a = 1\], \[b = 1\]and \[c = 1\]
Now, Determinant, \[D = {b^2} - 4ac\]
Hence, for \[\left( {{z^2} + z + 1} \right) = 0\],
\[D = {\left( 1 \right)^2} - 4 \times 1 = 1 - 4 = - 3\]
Now, , Using quadratic formula,
\[z = \dfrac{{ - b \pm \sqrt D }}{{2a}}\]
Here, \[a = 1\], \[b = 1\]and \[c = 1\] and \[D = - 3\]
\[ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt { - 3} }}{2}\]
This can be written as:
\[ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt 3 i}}{2}\]
Therefore, the three cube roots of unity are:
\[1\], \[\dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2}\] and \[\dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2}\]
Now, according to the property, the sum of these three cube roots of unity will be equal to 0.
We know that,
\[1 + \omega + {\omega ^2} = 0\]
Here, \[\omega \] represents the imaginary cube roots.
\[ \Rightarrow 1 + \dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2} + \dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2} = 1 - 1 + 0 = 0\]
Hence, proved.
Formula Used:
We will use the following formulas:
1.\[{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\]
2.\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
3.\[1 + \omega + {\omega ^2} = 0\]
Complete step-by-step answer:
According to the question, if 1, \[\omega \], \[{\omega ^2}\] are cube the roots of unity.
As sum of three cube roots of unity is 0, so \[1 + \omega + {\omega ^2} = 0\]
\[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3}\]
Now, using the formula \[{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\], we get
Let \[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3} = S\]
\[S = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} + {a^3} + 3{a^2}b\omega + 3a{b^2}{\omega ^2} + {b^3} + {a^3} + 3{a^2}b{\omega ^2} + 3a{b^2}\omega + {b^3}\]
Taking the like terms common, we get,
\[ \Rightarrow S = 3{a^3} + 3{a^2}b\left( {1 + \omega + {\omega ^2}} \right) + 3a{b^2}\left( {1 + \omega + {\omega ^2}} \right) + 3{b^3}\]
But,\[1 + \omega + {\omega ^2} = 0\], therefore
\[ \Rightarrow S = 3{a^3} + 3{a^2}b\left( 0 \right) + 3a{b^2}\left( 0 \right) + 3{b^3}\]
\[ \Rightarrow S = 3{a^3} + 3{b^3} = 3\left( {{a^3} + {b^3}} \right)\]
Hence, the value of \[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3} = 3\left( {{a^3} + {b^3}} \right)\]
\[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2}\]
Let \[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2} = T\]
Using the formula \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\], we get
\[ \Rightarrow T = = {a^2} + 4ab + 4{b^2} + {a^2}\omega + 4ab + 4{b^2}{\omega ^2} + {a^2}{\omega ^2} + 4ab + 4{b^2}\omega \]
Taking the like terms common, we get,
\[ \Rightarrow T = {a^2}\left( {1 + \omega + {\omega ^2}} \right) + 12ab + 4{b^2}\left( {1 + \omega + {\omega ^2}} \right)\]
But, \[1 + \omega + {\omega ^2} = 0\], hence,
\[ \Rightarrow T = {a^2}\left( 0 \right) + 12ab + 4{b^2}\left( 0 \right)\]
\[ \Rightarrow T = 12ab\]
Hence, the value of \[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2} = 12ab\]
Note: In this question we have assumed that \[1 + \omega + {\omega ^2} = 0\]. We can prove this equation as shown below.
Let us assume the cube root of unity or 1 as:
\[\sqrt[3]{1} = z\]
Cubing both sides, we get
\[ \Rightarrow 1 = {z^3}\]
Or
\[ \Rightarrow {z^3} - 1 = 0\]
Now, using the formula \[\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\], we get
\[ \Rightarrow \left( {z - 1} \right)\left( {{z^2} + z + 1} \right) = 0\]
Therefore, either \[\left( {z - 1} \right) = 0\]
\[ \Rightarrow z = 1\]
Or, \[\left( {{z^2} + z + 1} \right) = 0\]
Comparing with \[\left( {a{x^2} + bx + c} \right) = 0\]
Here, \[a = 1\], \[b = 1\]and \[c = 1\]
Now, Determinant, \[D = {b^2} - 4ac\]
Hence, for \[\left( {{z^2} + z + 1} \right) = 0\],
\[D = {\left( 1 \right)^2} - 4 \times 1 = 1 - 4 = - 3\]
Now, , Using quadratic formula,
\[z = \dfrac{{ - b \pm \sqrt D }}{{2a}}\]
Here, \[a = 1\], \[b = 1\]and \[c = 1\] and \[D = - 3\]
\[ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt { - 3} }}{2}\]
This can be written as:
\[ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt 3 i}}{2}\]
Therefore, the three cube roots of unity are:
\[1\], \[\dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2}\] and \[\dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2}\]
Now, according to the property, the sum of these three cube roots of unity will be equal to 0.
We know that,
\[1 + \omega + {\omega ^2} = 0\]
Here, \[\omega \] represents the imaginary cube roots.
\[ \Rightarrow 1 + \dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2} + \dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2} = 1 - 1 + 0 = 0\]
Hence, proved.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers