Answer
Verified
468.9k+ views
Hint: In this problem, it is given that the ratio of ${}^{2n}{C_3}$ to ${}^n{P_2}$ is equal to the ratio of $10$ to $3$. That is, $\dfrac{{{}^{2n}{C_3}}}{{{}^n{P_2}}} = \dfrac{{10}}{3}$. We need to find the value of $n$. For this, we will use the formula of combination and permutation. We know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ and ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$. We will use this formula in the given relation and we will simplify the expression to get the required value of $n$.
Complete step by step solution: In this problem, it is given that ${}^{2n}{C_3}:{}^n{P_2} = 10:3$. That is, the ratio of ${}^{2n}{C_3}$ to ${}^n{P_2}$ is equal to the ratio of $10$ to $3$. Therefore, we can write this expression as $\dfrac{{{}^{2n}{C_3}}}{{{}^n{P_2}}} = \dfrac{{10}}{3}\; \Rightarrow 3\left[ {{}^{2n}{C_3}} \right] = 10\left[ {{}^n{P_2}} \right] \cdots \cdots \left( 1 \right)$.
Now we are going to use the formula of combination and permutation in equation $\left( 1 \right)$. That is, we are going to use the formula ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ and ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$ in equation $\left( 1 \right)$. Therefore,$3\left[ {{}^{2n}{C_3}} \right] = 10\left[ {{}^n{P_2}} \right]$
$ \Rightarrow 3\left[ {\dfrac{{\left( {2n} \right)!}}{{3!\left( {2n - 3} \right)!}}} \right] = 10\left[ {\dfrac{{n!}}{{\left( {n - 2} \right)!}}} \right]$
Now we will write $\left( {2n} \right)!$ as $\left( {2n} \right)! = 2n \times \left( {2n - 1} \right) \times \left( {2n - 2} \right) \times \left( {2n - 3} \right)!$. Also we can write $n!$ as $n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right)!$. Therefore, we get
$3\left[ {\dfrac{{2n \times \left( {2n - 1} \right) \times \left( {2n - 2} \right) \times \left( {2n - 3} \right)!}}{{6\left( {2n - 3} \right)!}}} \right] = 10\left[ {\dfrac{{n \times \left( {n - 1} \right) \times \left( {n - 2} \right)!}}{{\left( {n - 2} \right)!}}} \right]$
On cancelling $\left( {2n - 3} \right)!$ and $\left( {n - 2} \right)!$ from above expression and after simplification, we get
$n \times \left( {2n - 1} \right) \times \left( {2n - 2} \right) = 10n \times \left( {n - 1} \right)$
$ \Rightarrow n \times \left( {2n - 1} \right) \times 2\left( {n - 1} \right) = 10n \times \left( {n - 1} \right)$
On cancelling $n \times \left( {n - 1} \right)$ from both sides in above expression, we get
$\left( {2n - 1} \right) \times 2 = 10$
$ \Rightarrow 2n - 1 = 5$
$ \Rightarrow 2n = 5 + 1$
$ \Rightarrow 2n = 6$
$ \Rightarrow n = \dfrac{6}{2} = 3$
Note that here $n = 3$ is a natural number. Therefore, we can say that $n = 3 \in N$.
Therefore, if ${}^{2n}{C_3}:{}^n{P_2} = 10:3$ then the value of $n$ is $3$.
Therefore, option C is correct.
Note: $N$ is the set of natural numbers. Number of permutations of $n$ objects taken $r$ objects at a time is denoted by ${}^n{P_r}$. It is also denoted by $P\left( {n,r} \right)$ and it is given by $P\left( {n,r} \right) = \dfrac{{n!}}{{\left( {n - r} \right)!}}$. In permutation, order of elements (objects) is important. Number of combinations of $n$ objects taken $r$ at a time is denoted by ${}^n{C_r}$. It is also denoted by $C\left( {n,r} \right)$ and it is given by $C\left( {n,r} \right) = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. In combination, order of elements (objects) is not important.
Complete step by step solution: In this problem, it is given that ${}^{2n}{C_3}:{}^n{P_2} = 10:3$. That is, the ratio of ${}^{2n}{C_3}$ to ${}^n{P_2}$ is equal to the ratio of $10$ to $3$. Therefore, we can write this expression as $\dfrac{{{}^{2n}{C_3}}}{{{}^n{P_2}}} = \dfrac{{10}}{3}\; \Rightarrow 3\left[ {{}^{2n}{C_3}} \right] = 10\left[ {{}^n{P_2}} \right] \cdots \cdots \left( 1 \right)$.
Now we are going to use the formula of combination and permutation in equation $\left( 1 \right)$. That is, we are going to use the formula ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ and ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$ in equation $\left( 1 \right)$. Therefore,$3\left[ {{}^{2n}{C_3}} \right] = 10\left[ {{}^n{P_2}} \right]$
$ \Rightarrow 3\left[ {\dfrac{{\left( {2n} \right)!}}{{3!\left( {2n - 3} \right)!}}} \right] = 10\left[ {\dfrac{{n!}}{{\left( {n - 2} \right)!}}} \right]$
Now we will write $\left( {2n} \right)!$ as $\left( {2n} \right)! = 2n \times \left( {2n - 1} \right) \times \left( {2n - 2} \right) \times \left( {2n - 3} \right)!$. Also we can write $n!$ as $n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right)!$. Therefore, we get
$3\left[ {\dfrac{{2n \times \left( {2n - 1} \right) \times \left( {2n - 2} \right) \times \left( {2n - 3} \right)!}}{{6\left( {2n - 3} \right)!}}} \right] = 10\left[ {\dfrac{{n \times \left( {n - 1} \right) \times \left( {n - 2} \right)!}}{{\left( {n - 2} \right)!}}} \right]$
On cancelling $\left( {2n - 3} \right)!$ and $\left( {n - 2} \right)!$ from above expression and after simplification, we get
$n \times \left( {2n - 1} \right) \times \left( {2n - 2} \right) = 10n \times \left( {n - 1} \right)$
$ \Rightarrow n \times \left( {2n - 1} \right) \times 2\left( {n - 1} \right) = 10n \times \left( {n - 1} \right)$
On cancelling $n \times \left( {n - 1} \right)$ from both sides in above expression, we get
$\left( {2n - 1} \right) \times 2 = 10$
$ \Rightarrow 2n - 1 = 5$
$ \Rightarrow 2n = 5 + 1$
$ \Rightarrow 2n = 6$
$ \Rightarrow n = \dfrac{6}{2} = 3$
Note that here $n = 3$ is a natural number. Therefore, we can say that $n = 3 \in N$.
Therefore, if ${}^{2n}{C_3}:{}^n{P_2} = 10:3$ then the value of $n$ is $3$.
Therefore, option C is correct.
Note: $N$ is the set of natural numbers. Number of permutations of $n$ objects taken $r$ objects at a time is denoted by ${}^n{P_r}$. It is also denoted by $P\left( {n,r} \right)$ and it is given by $P\left( {n,r} \right) = \dfrac{{n!}}{{\left( {n - r} \right)!}}$. In permutation, order of elements (objects) is important. Number of combinations of $n$ objects taken $r$ at a time is denoted by ${}^n{C_r}$. It is also denoted by $C\left( {n,r} \right)$ and it is given by $C\left( {n,r} \right) = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. In combination, order of elements (objects) is not important.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers