
If ${}^{2n}{C_3}:{}^n{P_2} = 10:3$ where $n \in N$ then $n$ is
A. $4$
B. $7$
C. $3$
D. $6$
Answer
592.5k+ views
Hint: In this problem, it is given that the ratio of ${}^{2n}{C_3}$ to ${}^n{P_2}$ is equal to the ratio of $10$ to $3$. That is, $\dfrac{{{}^{2n}{C_3}}}{{{}^n{P_2}}} = \dfrac{{10}}{3}$. We need to find the value of $n$. For this, we will use the formula of combination and permutation. We know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ and ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$. We will use this formula in the given relation and we will simplify the expression to get the required value of $n$.
Complete step by step solution: In this problem, it is given that ${}^{2n}{C_3}:{}^n{P_2} = 10:3$. That is, the ratio of ${}^{2n}{C_3}$ to ${}^n{P_2}$ is equal to the ratio of $10$ to $3$. Therefore, we can write this expression as $\dfrac{{{}^{2n}{C_3}}}{{{}^n{P_2}}} = \dfrac{{10}}{3}\; \Rightarrow 3\left[ {{}^{2n}{C_3}} \right] = 10\left[ {{}^n{P_2}} \right] \cdots \cdots \left( 1 \right)$.
Now we are going to use the formula of combination and permutation in equation $\left( 1 \right)$. That is, we are going to use the formula ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ and ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$ in equation $\left( 1 \right)$. Therefore,$3\left[ {{}^{2n}{C_3}} \right] = 10\left[ {{}^n{P_2}} \right]$
$ \Rightarrow 3\left[ {\dfrac{{\left( {2n} \right)!}}{{3!\left( {2n - 3} \right)!}}} \right] = 10\left[ {\dfrac{{n!}}{{\left( {n - 2} \right)!}}} \right]$
Now we will write $\left( {2n} \right)!$ as $\left( {2n} \right)! = 2n \times \left( {2n - 1} \right) \times \left( {2n - 2} \right) \times \left( {2n - 3} \right)!$. Also we can write $n!$ as $n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right)!$. Therefore, we get
$3\left[ {\dfrac{{2n \times \left( {2n - 1} \right) \times \left( {2n - 2} \right) \times \left( {2n - 3} \right)!}}{{6\left( {2n - 3} \right)!}}} \right] = 10\left[ {\dfrac{{n \times \left( {n - 1} \right) \times \left( {n - 2} \right)!}}{{\left( {n - 2} \right)!}}} \right]$
On cancelling $\left( {2n - 3} \right)!$ and $\left( {n - 2} \right)!$ from above expression and after simplification, we get
$n \times \left( {2n - 1} \right) \times \left( {2n - 2} \right) = 10n \times \left( {n - 1} \right)$
$ \Rightarrow n \times \left( {2n - 1} \right) \times 2\left( {n - 1} \right) = 10n \times \left( {n - 1} \right)$
On cancelling $n \times \left( {n - 1} \right)$ from both sides in above expression, we get
$\left( {2n - 1} \right) \times 2 = 10$
$ \Rightarrow 2n - 1 = 5$
$ \Rightarrow 2n = 5 + 1$
$ \Rightarrow 2n = 6$
$ \Rightarrow n = \dfrac{6}{2} = 3$
Note that here $n = 3$ is a natural number. Therefore, we can say that $n = 3 \in N$.
Therefore, if ${}^{2n}{C_3}:{}^n{P_2} = 10:3$ then the value of $n$ is $3$.
Therefore, option C is correct.
Note: $N$ is the set of natural numbers. Number of permutations of $n$ objects taken $r$ objects at a time is denoted by ${}^n{P_r}$. It is also denoted by $P\left( {n,r} \right)$ and it is given by $P\left( {n,r} \right) = \dfrac{{n!}}{{\left( {n - r} \right)!}}$. In permutation, order of elements (objects) is important. Number of combinations of $n$ objects taken $r$ at a time is denoted by ${}^n{C_r}$. It is also denoted by $C\left( {n,r} \right)$ and it is given by $C\left( {n,r} \right) = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. In combination, order of elements (objects) is not important.
Complete step by step solution: In this problem, it is given that ${}^{2n}{C_3}:{}^n{P_2} = 10:3$. That is, the ratio of ${}^{2n}{C_3}$ to ${}^n{P_2}$ is equal to the ratio of $10$ to $3$. Therefore, we can write this expression as $\dfrac{{{}^{2n}{C_3}}}{{{}^n{P_2}}} = \dfrac{{10}}{3}\; \Rightarrow 3\left[ {{}^{2n}{C_3}} \right] = 10\left[ {{}^n{P_2}} \right] \cdots \cdots \left( 1 \right)$.
Now we are going to use the formula of combination and permutation in equation $\left( 1 \right)$. That is, we are going to use the formula ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ and ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$ in equation $\left( 1 \right)$. Therefore,$3\left[ {{}^{2n}{C_3}} \right] = 10\left[ {{}^n{P_2}} \right]$
$ \Rightarrow 3\left[ {\dfrac{{\left( {2n} \right)!}}{{3!\left( {2n - 3} \right)!}}} \right] = 10\left[ {\dfrac{{n!}}{{\left( {n - 2} \right)!}}} \right]$
Now we will write $\left( {2n} \right)!$ as $\left( {2n} \right)! = 2n \times \left( {2n - 1} \right) \times \left( {2n - 2} \right) \times \left( {2n - 3} \right)!$. Also we can write $n!$ as $n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right)!$. Therefore, we get
$3\left[ {\dfrac{{2n \times \left( {2n - 1} \right) \times \left( {2n - 2} \right) \times \left( {2n - 3} \right)!}}{{6\left( {2n - 3} \right)!}}} \right] = 10\left[ {\dfrac{{n \times \left( {n - 1} \right) \times \left( {n - 2} \right)!}}{{\left( {n - 2} \right)!}}} \right]$
On cancelling $\left( {2n - 3} \right)!$ and $\left( {n - 2} \right)!$ from above expression and after simplification, we get
$n \times \left( {2n - 1} \right) \times \left( {2n - 2} \right) = 10n \times \left( {n - 1} \right)$
$ \Rightarrow n \times \left( {2n - 1} \right) \times 2\left( {n - 1} \right) = 10n \times \left( {n - 1} \right)$
On cancelling $n \times \left( {n - 1} \right)$ from both sides in above expression, we get
$\left( {2n - 1} \right) \times 2 = 10$
$ \Rightarrow 2n - 1 = 5$
$ \Rightarrow 2n = 5 + 1$
$ \Rightarrow 2n = 6$
$ \Rightarrow n = \dfrac{6}{2} = 3$
Note that here $n = 3$ is a natural number. Therefore, we can say that $n = 3 \in N$.
Therefore, if ${}^{2n}{C_3}:{}^n{P_2} = 10:3$ then the value of $n$ is $3$.
Therefore, option C is correct.
Note: $N$ is the set of natural numbers. Number of permutations of $n$ objects taken $r$ objects at a time is denoted by ${}^n{P_r}$. It is also denoted by $P\left( {n,r} \right)$ and it is given by $P\left( {n,r} \right) = \dfrac{{n!}}{{\left( {n - r} \right)!}}$. In permutation, order of elements (objects) is important. Number of combinations of $n$ objects taken $r$ at a time is denoted by ${}^n{C_r}$. It is also denoted by $C\left( {n,r} \right)$ and it is given by $C\left( {n,r} \right) = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. In combination, order of elements (objects) is not important.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

