If \[800\] people were asked whether they wear glasses for reading with following results. Compute the \[{\chi ^2}\] square statistics.
Answer
Verified
463.5k+ views
Hint: Here we will use the concept of expected frequencies to calculate the \[{\chi ^2}\] square statistics. We will first find the sum of the rows and columns. Then we will calculate the value of the expected frequencies of each square. We will use the formula for the \[{\chi ^2}\] square to get its value.
Formula used:
We will use the formula \[{\chi ^2} = \sum {\left[ {\dfrac{{{{\left( {{O_{ij}} - {E_{ij}}} \right)}^2}}}{{{E_{ij}}}}} \right]} \]where, \[O\] is denoted for original value and \[E\] is denoted for expected value.
Complete step-by-step answer:
So firstly we will find the sum of the rows and the columns, we get
We know that the expected frequency is generally given by \[{E_{ij}} = \dfrac{{{R_i} \times {C_j}}}{N}\] .
So we will find the expected frequency for every square using the formula . Therefore, we get
\[{E_{11}} = \dfrac{{{R_1} \times {C_1}}}{N}\]
Now substituting \[{R_1} = 400\], \[{C_1} = 600\] and \[N = 800\] in above equation, we get
\[ \Rightarrow {E_{11}} = \dfrac{{400 \times 600}}{{800}} = 300\]
Now substituting \[{R_1} = 400\], \[{C_1} = 200\] and \[N = 800\] in the formula, we get
\[\begin{array}{l}{E_{12}} = \dfrac{{{R_1} \times {C_2}}}{N}\\ \Rightarrow {E_{12}} = \dfrac{{400 \times 200}}{{800}} = 100\end{array}\]
Now substituting \[{R_2} = 400\], \[{C_1} = 600\] and \[N = 800\] in formula, we get
\[\begin{array}{l}{E_{21}} = \dfrac{{{R_2} \times {C_1}}}{N}\\ \Rightarrow {E_{21}} = \dfrac{{400 \times 600}}{{800}} = 300\end{array}\]
Now substituting \[{R_2} = 400\], \[{C_2} = 200\] and \[N = 800\] in formula, we get
\[\begin{array}{l}{E_{22}} = \dfrac{{{R_2} \times {C_2}}}{N}\\ \Rightarrow {E_{22}} = \dfrac{{400 \times 200}}{{800}} = 100\end{array}\]
Now we will use the formula of the \[{\chi ^2}\] square statistics to get its value.
Therefore, substituting the value in formula \[{\chi ^2} = \sum {\left[ {\dfrac{{{{\left( {{O_{ij}} - {E_{ij}}} \right)}^2}}}{{{E_{ij}}}}} \right]} \], we get
\[{\chi ^2} = \dfrac{{{{\left( {310 - 300} \right)}^2}}}{{300}} + \dfrac{{{{\left( {90 - 100} \right)}^2}}}{{100}} + \dfrac{{{{\left( {290 - 300} \right)}^2}}}{{300}} + \dfrac{{{{\left( {110 - 100} \right)}^2}}}{{100}}\]
By solving this, we get
\[ \Rightarrow {\chi ^2} = \dfrac{{{{\left( {10} \right)}^2}}}{{300}} + \dfrac{{{{\left( { - 10} \right)}^2}}}{{100}} + \dfrac{{{{\left( { - 10} \right)}^2}}}{{300}} + \dfrac{{{{\left( {10} \right)}^2}}}{{100}}\]
Simplifying the terms, we get
\[ \Rightarrow {\chi ^2} = 0.33 + 1 + 0.33 + 1\]
Adding the terms, we get
\[ \Rightarrow {\chi ^2} = 2.66\]
Hence, the value of \[{\chi ^2}\] square statistics is \[2.66\].
Note: Statistics is the science of collecting some data in the form of the number and studying it to forecast or predict its future possibility. An array is an arrangement of numbers or symbols in rows and columns. Frequency is defined as the number of times a value or some particular data is repeating itself. Frequency arrays help us a lot for the prediction and probability purpose and it also helps us to analyse real life data like to predict the sale of some specific product or to analyse the sales of the same type of products in the market. A
Formula used:
We will use the formula \[{\chi ^2} = \sum {\left[ {\dfrac{{{{\left( {{O_{ij}} - {E_{ij}}} \right)}^2}}}{{{E_{ij}}}}} \right]} \]where, \[O\] is denoted for original value and \[E\] is denoted for expected value.
Complete step-by-step answer:
So firstly we will find the sum of the rows and the columns, we get
We know that the expected frequency is generally given by \[{E_{ij}} = \dfrac{{{R_i} \times {C_j}}}{N}\] .
So we will find the expected frequency for every square using the formula . Therefore, we get
\[{E_{11}} = \dfrac{{{R_1} \times {C_1}}}{N}\]
Now substituting \[{R_1} = 400\], \[{C_1} = 600\] and \[N = 800\] in above equation, we get
\[ \Rightarrow {E_{11}} = \dfrac{{400 \times 600}}{{800}} = 300\]
Now substituting \[{R_1} = 400\], \[{C_1} = 200\] and \[N = 800\] in the formula, we get
\[\begin{array}{l}{E_{12}} = \dfrac{{{R_1} \times {C_2}}}{N}\\ \Rightarrow {E_{12}} = \dfrac{{400 \times 200}}{{800}} = 100\end{array}\]
Now substituting \[{R_2} = 400\], \[{C_1} = 600\] and \[N = 800\] in formula, we get
\[\begin{array}{l}{E_{21}} = \dfrac{{{R_2} \times {C_1}}}{N}\\ \Rightarrow {E_{21}} = \dfrac{{400 \times 600}}{{800}} = 300\end{array}\]
Now substituting \[{R_2} = 400\], \[{C_2} = 200\] and \[N = 800\] in formula, we get
\[\begin{array}{l}{E_{22}} = \dfrac{{{R_2} \times {C_2}}}{N}\\ \Rightarrow {E_{22}} = \dfrac{{400 \times 200}}{{800}} = 100\end{array}\]
Now we will use the formula of the \[{\chi ^2}\] square statistics to get its value.
Therefore, substituting the value in formula \[{\chi ^2} = \sum {\left[ {\dfrac{{{{\left( {{O_{ij}} - {E_{ij}}} \right)}^2}}}{{{E_{ij}}}}} \right]} \], we get
\[{\chi ^2} = \dfrac{{{{\left( {310 - 300} \right)}^2}}}{{300}} + \dfrac{{{{\left( {90 - 100} \right)}^2}}}{{100}} + \dfrac{{{{\left( {290 - 300} \right)}^2}}}{{300}} + \dfrac{{{{\left( {110 - 100} \right)}^2}}}{{100}}\]
By solving this, we get
\[ \Rightarrow {\chi ^2} = \dfrac{{{{\left( {10} \right)}^2}}}{{300}} + \dfrac{{{{\left( { - 10} \right)}^2}}}{{100}} + \dfrac{{{{\left( { - 10} \right)}^2}}}{{300}} + \dfrac{{{{\left( {10} \right)}^2}}}{{100}}\]
Simplifying the terms, we get
\[ \Rightarrow {\chi ^2} = 0.33 + 1 + 0.33 + 1\]
Adding the terms, we get
\[ \Rightarrow {\chi ^2} = 2.66\]
Hence, the value of \[{\chi ^2}\] square statistics is \[2.66\].
Note: Statistics is the science of collecting some data in the form of the number and studying it to forecast or predict its future possibility. An array is an arrangement of numbers or symbols in rows and columns. Frequency is defined as the number of times a value or some particular data is repeating itself. Frequency arrays help us a lot for the prediction and probability purpose and it also helps us to analyse real life data like to predict the sale of some specific product or to analyse the sales of the same type of products in the market. A
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE