Answer
Verified
500.4k+ views
Hint: $\sin \pi = 0$, $\cos (\pi - x) = - \cos x$
Using the properties of trigonometry first, we make the determinant simple and then further solve it.
Also given
$A + B + C = \pi$
Applying trigonometric properties, we get
$
\sin (A + B + C) = \sin \pi = 0 \\
\cos (A + B) = \cos (\pi - C) = - \cos C \\
$
Putting these values in the determinant, we get
$
\Delta = \left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
0&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{ - \cos C}&{ - \tan A}&0
\end{array}} \right| \\
\\
$
Now expanding the determinant through row${R_1}$,we get
$\begin{gathered}
\Delta = 0\left| {\begin{array}{*{20}{c}}
0&{\tan A} \\
{ - \tan A}&0
\end{array}} \right| + ( - \sin B)\left| {\begin{array}{*{20}{c}}
{\sin B}&{\tan A} \\
{ - \cos C}&0
\end{array}} \right| + \cos C\left| {\begin{array}{*{20}{c}}
{\sin B}&0 \\
{ - \cos C}&{ - \tan A}
\end{array}} \right| \\
\Delta = - \sin B(0 - (\tan A)( - \cos C)) + \cos C((\sin B)( - \tan A) - 0) \\
\Delta = \sin B\tan A\cos C - \sin B\tan A\cos C \\
\Delta = 0 \\
\end{gathered} $
Therefore, value of determinant,
$\Delta = \left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = 0$
Note: Use of trigonometric properties transforms complex determinant into simple determinant
So, first apply trigonometric properties and then expand the determinant. As this will be the
easiest and efficient way to get the solution of such problems.
Using the properties of trigonometry first, we make the determinant simple and then further solve it.
Also given
$A + B + C = \pi$
Applying trigonometric properties, we get
$
\sin (A + B + C) = \sin \pi = 0 \\
\cos (A + B) = \cos (\pi - C) = - \cos C \\
$
Putting these values in the determinant, we get
$
\Delta = \left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
0&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{ - \cos C}&{ - \tan A}&0
\end{array}} \right| \\
\\
$
Now expanding the determinant through row${R_1}$,we get
$\begin{gathered}
\Delta = 0\left| {\begin{array}{*{20}{c}}
0&{\tan A} \\
{ - \tan A}&0
\end{array}} \right| + ( - \sin B)\left| {\begin{array}{*{20}{c}}
{\sin B}&{\tan A} \\
{ - \cos C}&0
\end{array}} \right| + \cos C\left| {\begin{array}{*{20}{c}}
{\sin B}&0 \\
{ - \cos C}&{ - \tan A}
\end{array}} \right| \\
\Delta = - \sin B(0 - (\tan A)( - \cos C)) + \cos C((\sin B)( - \tan A) - 0) \\
\Delta = \sin B\tan A\cos C - \sin B\tan A\cos C \\
\Delta = 0 \\
\end{gathered} $
Therefore, value of determinant,
$\Delta = \left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = 0$
Note: Use of trigonometric properties transforms complex determinant into simple determinant
So, first apply trigonometric properties and then expand the determinant. As this will be the
easiest and efficient way to get the solution of such problems.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE