
If A and B are invertible matrices of order 3. $\left| A \right|$=2 and$\left| {{{\left( {AB} \right)}^{ - 1}}} \right| = \dfrac{{ - 1}}{6}$, find $\left| B \right|$
Answer
594.3k+ views
Hint – In this question use the concept that since A and B are invertible hence $\left| A \right|\left| {{A^{ - 1}}} \right| = 1$ and $\left| B \right|\left| {{B^{ - 1}}} \right| = 1$. Then use the property of invertible matrix that ${\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}}$and the property of determinant that $\left| {BA} \right| = \left| B \right|\left| A \right|$this will help getting the value of$\left| B \right|$.
Complete step-by-step answer:
If A and B are invertible matrices then the inverse of A and B exist.
$ \Rightarrow \left| A \right|\left| {{A^{ - 1}}} \right| = 1$..................... (1)
And
$ \Rightarrow \left| B \right|\left| {{B^{ - 1}}} \right| = 1$.................... (2)
Now it is given that $\left| A \right| = 2$ ................ (3)
And$\left| {{{\left( {AB} \right)}^{ - 1}}} \right| = - \dfrac{1}{6}$................... (4)
And if A and B are invertible then AB is invertible and, ${\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}}$
$ \Rightarrow \left| {{{\left( {AB} \right)}^{ - 1}}} \right| = \left| {{B^{ - 1}}{A^{ - 1}}} \right|$
And we all know that $\left| {BA} \right| = \left| B \right|\left| A \right|$ and from equation (4) we have,
$ \Rightarrow \left| {{{\left( {AB} \right)}^{ - 1}}} \right| = \left| {{B^{ - 1}}{A^{ - 1}}} \right| = \left| {{B^{ - 1}}} \right|\left| {{A^{ - 1}}} \right| = - \dfrac{1}{6}$............... (5)
Now from equation (1) and (3) we have,
$ \Rightarrow 2\left| {{A^{ - 1}}} \right| = 1$
$ \Rightarrow \left| {{A^{ - 1}}} \right| = \dfrac{1}{2}$
Now from equation (5) we have,
$ \Rightarrow \left| {{B^{ - 1}}} \right|\dfrac{1}{2} = - \dfrac{1}{6}$
$ \Rightarrow \left| {{B^{ - 1}}} \right| = - \dfrac{2}{6} = - \dfrac{1}{3}$
Now from equation (2) we have,
$ \Rightarrow \left| B \right|\left( {\dfrac{{ - 1}}{3}} \right) = 1$
$ \Rightarrow \left| B \right| = - 3$
So this is the required answer.
Note – A matrix (square matrix) is invertible matrix if and only if there exist another matrix B (square matrix) such that $AB = BA = I$ where I is the identity matrix of same order as that of order of A and B. If a square matrix has an invertible matrix then determinant value should be non-zero, or it must be non-singular.
Complete step-by-step answer:
If A and B are invertible matrices then the inverse of A and B exist.
$ \Rightarrow \left| A \right|\left| {{A^{ - 1}}} \right| = 1$..................... (1)
And
$ \Rightarrow \left| B \right|\left| {{B^{ - 1}}} \right| = 1$.................... (2)
Now it is given that $\left| A \right| = 2$ ................ (3)
And$\left| {{{\left( {AB} \right)}^{ - 1}}} \right| = - \dfrac{1}{6}$................... (4)
And if A and B are invertible then AB is invertible and, ${\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}}$
$ \Rightarrow \left| {{{\left( {AB} \right)}^{ - 1}}} \right| = \left| {{B^{ - 1}}{A^{ - 1}}} \right|$
And we all know that $\left| {BA} \right| = \left| B \right|\left| A \right|$ and from equation (4) we have,
$ \Rightarrow \left| {{{\left( {AB} \right)}^{ - 1}}} \right| = \left| {{B^{ - 1}}{A^{ - 1}}} \right| = \left| {{B^{ - 1}}} \right|\left| {{A^{ - 1}}} \right| = - \dfrac{1}{6}$............... (5)
Now from equation (1) and (3) we have,
$ \Rightarrow 2\left| {{A^{ - 1}}} \right| = 1$
$ \Rightarrow \left| {{A^{ - 1}}} \right| = \dfrac{1}{2}$
Now from equation (5) we have,
$ \Rightarrow \left| {{B^{ - 1}}} \right|\dfrac{1}{2} = - \dfrac{1}{6}$
$ \Rightarrow \left| {{B^{ - 1}}} \right| = - \dfrac{2}{6} = - \dfrac{1}{3}$
Now from equation (2) we have,
$ \Rightarrow \left| B \right|\left( {\dfrac{{ - 1}}{3}} \right) = 1$
$ \Rightarrow \left| B \right| = - 3$
So this is the required answer.
Note – A matrix (square matrix) is invertible matrix if and only if there exist another matrix B (square matrix) such that $AB = BA = I$ where I is the identity matrix of same order as that of order of A and B. If a square matrix has an invertible matrix then determinant value should be non-zero, or it must be non-singular.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

