Answer
Verified
397.5k+ views
Hint: First we have to define what the terms we need to solve the problem are.
The given question they were asking to find the common roots, solution as follows, since we need to know about Arithmetic progression. An arithmetic progression can be given by $ a,(a + d),(a + 2d),(a + 3d),... $ where $ a $ is the first term and $ d $ is the common difference.
Complete step by step answer:
Since in this question we need prove $ \dfrac{d}{e},\dfrac{e}{b},\dfrac{f}{c} $ are in the common roots of the quadratic terms; $ a{x^2} + 2bx + c = 0 $ and $ d{x^2} + 2ex + f = 0 $ in the arithmetic progression.
Let the question is in the form of quadratic equation take the first equation, $ a{x^2} + 2bx + c = 0 $
In this equation assume that for the quadratic equation general formula $ {b^2} = ac $ or $ b = \sqrt {ac} $ and we will substitute in the equation which we take above we get; $ a{x^2} + 2bx + c = 0 $ $ \Rightarrow a{x^2} + 2\sqrt {ac} x + c = 0 $ (now we are going to take the common terms out which like $ {(a + b)^2} = {a^2} + {b^2} + 2ab $ ) we get; $ a{x^2} + 2\sqrt {ac} x + c = 0 \Rightarrow {(x\sqrt a + \sqrt c )^2} = 0 $ and the square will go to the right side and cancelled we get $ x = - \dfrac{{\sqrt c }}{{\sqrt a }} $ (the equator will term to right side) is the value of x;
Now we have the value of $ x = - \dfrac{{\sqrt c }}{{\sqrt a }} $ and substitute in the second equation $ d{x^2} + 2ex + f = 0 $
Thus $ d(\dfrac{c}{a}) + 2e( - \dfrac{{\sqrt c }}{{\sqrt a }}) + f = 0 $ (now taking the common terms and cross multiplying we get) after further solving into the simplified form we get $ \dfrac{d}{a} + \dfrac{f}{c} = 2e\sqrt {\dfrac{1}{{ac}}} $ (cross multiplied and changes of right left side equation also the common roots taken out)
since $ {b^2} = ac $ thus we get $ \dfrac{d}{a} + \dfrac{f}{c} = \dfrac{{2e}}{b} $ (which is in the addition with respect to A.P)
Thus, the quadratic equations of the first equation $ a{x^2} + 2bx + c = 0 $ and the second equation $ d{x^2} + 2ex + f = 0 $ have a common root provided that $ \dfrac{d}{e},\dfrac{e}{b},\dfrac{f}{c} $ are in A.P.
Note: likewise in G.P the terms are, \[a,(ar),(a{r^2}),(a{r^3}),...\] where $ a $ is the first term and $ r $ is the common ratio.
The quadratic equation can be simplified $ a{x^2} + 2bx + c = 0 $ into $ \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ so that we can able to find the roots of the quadratic equation.
The given question they were asking to find the common roots, solution as follows, since we need to know about Arithmetic progression. An arithmetic progression can be given by $ a,(a + d),(a + 2d),(a + 3d),... $ where $ a $ is the first term and $ d $ is the common difference.
Complete step by step answer:
Since in this question we need prove $ \dfrac{d}{e},\dfrac{e}{b},\dfrac{f}{c} $ are in the common roots of the quadratic terms; $ a{x^2} + 2bx + c = 0 $ and $ d{x^2} + 2ex + f = 0 $ in the arithmetic progression.
Let the question is in the form of quadratic equation take the first equation, $ a{x^2} + 2bx + c = 0 $
In this equation assume that for the quadratic equation general formula $ {b^2} = ac $ or $ b = \sqrt {ac} $ and we will substitute in the equation which we take above we get; $ a{x^2} + 2bx + c = 0 $ $ \Rightarrow a{x^2} + 2\sqrt {ac} x + c = 0 $ (now we are going to take the common terms out which like $ {(a + b)^2} = {a^2} + {b^2} + 2ab $ ) we get; $ a{x^2} + 2\sqrt {ac} x + c = 0 \Rightarrow {(x\sqrt a + \sqrt c )^2} = 0 $ and the square will go to the right side and cancelled we get $ x = - \dfrac{{\sqrt c }}{{\sqrt a }} $ (the equator will term to right side) is the value of x;
Now we have the value of $ x = - \dfrac{{\sqrt c }}{{\sqrt a }} $ and substitute in the second equation $ d{x^2} + 2ex + f = 0 $
Thus $ d(\dfrac{c}{a}) + 2e( - \dfrac{{\sqrt c }}{{\sqrt a }}) + f = 0 $ (now taking the common terms and cross multiplying we get) after further solving into the simplified form we get $ \dfrac{d}{a} + \dfrac{f}{c} = 2e\sqrt {\dfrac{1}{{ac}}} $ (cross multiplied and changes of right left side equation also the common roots taken out)
since $ {b^2} = ac $ thus we get $ \dfrac{d}{a} + \dfrac{f}{c} = \dfrac{{2e}}{b} $ (which is in the addition with respect to A.P)
Thus, the quadratic equations of the first equation $ a{x^2} + 2bx + c = 0 $ and the second equation $ d{x^2} + 2ex + f = 0 $ have a common root provided that $ \dfrac{d}{e},\dfrac{e}{b},\dfrac{f}{c} $ are in A.P.
Note: likewise in G.P the terms are, \[a,(ar),(a{r^2}),(a{r^3}),...\] where $ a $ is the first term and $ r $ is the common ratio.
The quadratic equation can be simplified $ a{x^2} + 2bx + c = 0 $ into $ \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ so that we can able to find the roots of the quadratic equation.
Recently Updated Pages
The total work done on a particle is equal to the change class 11 physics JEE_Main
A cylindrical tube open at both ends has a fundamental class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE