
If a charge is shifted from a high potential region to a low potential region, the electrical potential energy of the charge:
A) Increases
B) Decreases
C) May increase or decrease
D) Remains constant
Answer
138k+ views
1 likes
Hint: The potential energy of a charge depends on the sign of the charge as well as the direction of the electric field which is exerting on the charged particle. It will be the combination of both these events which decides whether the electrical potential energy of the charge will increase or decrease.
Formula used: In this question, we will use the following formula:
The potential energy of a charge where is the charge and is the change in potential experienced by the charge.
Complete step by step answer:
We know that when a positive charge moves from a region of higher to lower potential, it will lose its potential energy. This is because the tendency of the positive charge to move in the system decreases with decreasing potential. Mathematically, this can be explained from the formula of potential energy as
Now, since the charge moves from a region of high to low potential the term will be positive. Since in this case, the charge is also positive, so will the work be done.
However, if the charge is negative, the change in potential energy will be negative since will be negative.
Hence the potential energy may increase or decrease depending on the sign of the charge.
So, option (C) is correct.
Note: If the potential energy of the system is positive, in this case, for a positive charge, the electric potential or the corresponding electric field will be responsible for doing work on the charge and moving it. If the charge was negative, the potential energy would also be negative and we would have to do work against the system to move the charge.
Formula used: In this question, we will use the following formula:
The potential energy of a charge
Complete step by step answer:
We know that when a positive charge moves from a region of higher to lower potential, it will lose its potential energy. This is because the tendency of the positive charge to move in the system decreases with decreasing potential. Mathematically, this can be explained from the formula of potential energy as
Now, since the charge moves from a region of high to low potential the term
However, if the charge is negative, the change in potential energy will be negative since
Hence the potential energy may increase or decrease depending on the sign of the charge.
So, option (C) is correct.
Note: If the potential energy of the system is positive, in this case, for a positive charge, the electric potential or the corresponding electric field will be responsible for doing work on the charge and moving it. If the charge was negative, the potential energy would also be negative and we would have to do work against the system to move the charge.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Physics Average Value and RMS Value JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE
