
If a charge is shifted from a high potential region to a low potential region, the electrical potential energy of the charge:
A) Increases
B) Decreases
C) May increase or decrease
D) Remains constant
Answer
232.8k+ views
Hint: The potential energy of a charge depends on the sign of the charge as well as the direction of the electric field which is exerting on the charged particle. It will be the combination of both these events which decides whether the electrical potential energy of the charge will increase or decrease.
Formula used: In this question, we will use the following formula:
The potential energy of a charge \[U = q\Delta V\] where $q$ is the charge and $\Delta V$ is the change in potential experienced by the charge.
Complete step by step answer:
We know that when a positive charge moves from a region of higher to lower potential, it will lose its potential energy. This is because the tendency of the positive charge to move in the system decreases with decreasing potential. Mathematically, this can be explained from the formula of potential energy as
\[U = q\Delta V\]
Now, since the charge moves from a region of high to low potential the term $\Delta V$ will be positive. Since in this case, the charge is also positive, so will the work be done.
However, if the charge is negative, the change in potential energy will be negative since $q$ will be negative.
Hence the potential energy may increase or decrease depending on the sign of the charge.
So, option (C) is correct.
Note: If the potential energy of the system is positive, in this case, for a positive charge, the electric potential or the corresponding electric field will be responsible for doing work on the charge and moving it. If the charge was negative, the potential energy would also be negative and we would have to do work against the system to move the charge.
Formula used: In this question, we will use the following formula:
The potential energy of a charge \[U = q\Delta V\] where $q$ is the charge and $\Delta V$ is the change in potential experienced by the charge.
Complete step by step answer:
We know that when a positive charge moves from a region of higher to lower potential, it will lose its potential energy. This is because the tendency of the positive charge to move in the system decreases with decreasing potential. Mathematically, this can be explained from the formula of potential energy as
\[U = q\Delta V\]
Now, since the charge moves from a region of high to low potential the term $\Delta V$ will be positive. Since in this case, the charge is also positive, so will the work be done.
However, if the charge is negative, the change in potential energy will be negative since $q$ will be negative.
Hence the potential energy may increase or decrease depending on the sign of the charge.
So, option (C) is correct.
Note: If the potential energy of the system is positive, in this case, for a positive charge, the electric potential or the corresponding electric field will be responsible for doing work on the charge and moving it. If the charge was negative, the potential energy would also be negative and we would have to do work against the system to move the charge.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Why does capacitor block DC and allow AC class 12 physics JEE_Main

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

CBSE Class 12 Physics Set 2 (55/2/2) 2025 Question Paper & Solutions

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Units and Measurements Mock Test for JEE Main 2025-26 Preparation

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

