
If a charge is shifted from a high potential region to a low potential region, the electrical potential energy of the charge:
A) Increases
B) Decreases
C) May increase or decrease
D) Remains constant
Answer
127.8k+ views
Hint: The potential energy of a charge depends on the sign of the charge as well as the direction of the electric field which is exerting on the charged particle. It will be the combination of both these events which decides whether the electrical potential energy of the charge will increase or decrease.
Formula used: In this question, we will use the following formula:
The potential energy of a charge \[U = q\Delta V\] where $q$ is the charge and $\Delta V$ is the change in potential experienced by the charge.
Complete step by step answer:
We know that when a positive charge moves from a region of higher to lower potential, it will lose its potential energy. This is because the tendency of the positive charge to move in the system decreases with decreasing potential. Mathematically, this can be explained from the formula of potential energy as
\[U = q\Delta V\]
Now, since the charge moves from a region of high to low potential the term $\Delta V$ will be positive. Since in this case, the charge is also positive, so will the work be done.
However, if the charge is negative, the change in potential energy will be negative since $q$ will be negative.
Hence the potential energy may increase or decrease depending on the sign of the charge.
So, option (C) is correct.
Note: If the potential energy of the system is positive, in this case, for a positive charge, the electric potential or the corresponding electric field will be responsible for doing work on the charge and moving it. If the charge was negative, the potential energy would also be negative and we would have to do work against the system to move the charge.
Formula used: In this question, we will use the following formula:
The potential energy of a charge \[U = q\Delta V\] where $q$ is the charge and $\Delta V$ is the change in potential experienced by the charge.
Complete step by step answer:
We know that when a positive charge moves from a region of higher to lower potential, it will lose its potential energy. This is because the tendency of the positive charge to move in the system decreases with decreasing potential. Mathematically, this can be explained from the formula of potential energy as
\[U = q\Delta V\]
Now, since the charge moves from a region of high to low potential the term $\Delta V$ will be positive. Since in this case, the charge is also positive, so will the work be done.
However, if the charge is negative, the change in potential energy will be negative since $q$ will be negative.
Hence the potential energy may increase or decrease depending on the sign of the charge.
So, option (C) is correct.
Note: If the potential energy of the system is positive, in this case, for a positive charge, the electric potential or the corresponding electric field will be responsible for doing work on the charge and moving it. If the charge was negative, the potential energy would also be negative and we would have to do work against the system to move the charge.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Wheatstone Bridge for JEE Main Physics 2025

Electromagnetic Waves Chapter - Physics JEE Main
