Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

If a circle of radius R passes through the origin O and intersects the coordinate axes at \[A\] and \[B\] , then find the locus of the foot of perpendicular from \[O\] on \[AB\] .
(A) \[{\left( {{x^2} + {y^2}} \right)^2} = 4R{x^2}{y^2}\]
(B) \[\left( {{x^2} + {y^2}} \right)\left( {x + y} \right) = {R^2}xy\]
(C) \[{\left( {{x^2} + {y^2}} \right)^3} = 4{R^2}{x^2}{y^2}\]
(D) \[{\left( {{x^2} + {y^2}} \right)^2} = 4{R^2}{x^2}{y^2}\]

Answer
VerifiedVerified
387.3k+ views
Hint: We will first find the slope of the foot perpendicular from \[O\] on \[AB\] . As we know that the product of slopes of two perpendicular lines is \[ - 1\] , using this we will find the slope of \[AB\] and then the equation of line \[AB\] . Then we will find the coordinates of \[A\] and \[B\] . At last, we will find the length of \[AB\] and then equate it to the diameter of the circle to find the locus.

Complete step-by-step solution:
seo images

Let the foot of perpendicular from \[O\] on \[AB\] be \[P(h,k)\] .
As \[A\] lies on the x-axis, so the y coordinate of \[A\] will be zero. Similarly, \[B\] lies on the y-axis, so the x coordinate of \[B\] will be zero.
Slope of \[OP\]\[ = \dfrac{{k - 0}}{{h - 0}}\]
\[\therefore {\text{Slope of OP}} = \dfrac{k}{h}\]
As \[OP \bot AB\] ,
\[ \Rightarrow {\text{Slope of OP}} \times {\text{Slope of AB}} = - 1\]
On solving, we get
\[ \Rightarrow \dfrac{k}{h} \times {\text{Slope of AB}} = - 1\]
\[\therefore {\text{Slope of AB}} = - \dfrac{h}{k}\]
We know, equation of a line is given by
$y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}(x - {x_1})$
Hence, equation of \[AB\] is
$y - k = - \dfrac{h}{k}(x - h)$
Putting $x = 0$ ,
$y - k = \dfrac{{{h^2}}}{k}$
On rearranging,
$ \Rightarrow y = \dfrac{{{k^2} + {h^2}}}{k}$
Now, putting $y = 0$ ,
$ - k = - \dfrac{h}{k}\left( {x - h} \right)$
On solving,
$ \Rightarrow \dfrac{{{k^2}}}{h} = \left( {x - h} \right)$
On rearranging,
$ \Rightarrow x = \dfrac{{{k^2} + {h^2}}}{h}$
Now, we can write the coordinates of $A$ and $B$ as
$A\left( {\dfrac{{{k^2} + {h^2}}}{h},0} \right)$ and $B\left( {0,\dfrac{{{k^2} + {h^2}}}{k}} \right)$
Distance between two points $({x_1},{y_1})$ and $({x_2},{y_2})$ is given by $\sqrt {{{({x_1} - {x_2})}^2} + {{({y_1} - {y_2})}^2}} $ .
$\therefore AB = \sqrt {{{\left( {\dfrac{{{k^2} + {h^2}}}{h} - 0} \right)}^2} + {{\left( {0 - \dfrac{{{k^2} + {h^2}}}{k}} \right)}^2}} $
$\because AB = 2R$
$ \Rightarrow \sqrt {{{\left( {\dfrac{{{k^2} + {h^2}}}{h} - 0} \right)}^2} + {{\left( {0 - \dfrac{{{k^2} + {h^2}}}{k}} \right)}^2}} = 2R$
Squaring both sides
\[ \Rightarrow {\left( {\dfrac{{{k^2} + {h^2}}}{h}} \right)^2} + {\left( {\dfrac{{{k^2} + {h^2}}}{k}} \right)^2} = 4{R^2}\]
On solving,
\[ \Rightarrow \dfrac{{{{\left( {{k^2} + {h^2}} \right)}^2}}}{{{h^2}}} + \dfrac{{{{\left( {{k^2} + {h^2}} \right)}^2}}}{{{k^2}}} = 4{R^2}\]
Taking L.C.M.
\[ \Rightarrow \dfrac{{{k^2}{{\left( {{k^2} + {h^2}} \right)}^2} + {h^2}{{\left( {{k^2} + {h^2}} \right)}^2}}}{{{k^2}{h^2}}} = 4{R^2}\]
Taking \[{k^2}{h^2}\] to R.H.S.
\[ \Rightarrow {k^2}{\left( {{k^2} + {h^2}} \right)^2} + {h^2}{\left( {{k^2} + {h^2}} \right)^2} = 4{R^2}{k^2}{h^2}\]
Taking \[{\left( {{k^2} + {h^2}} \right)^2}\] common from L.H.S.
\[ \Rightarrow {\left( {{k^2} + {h^2}} \right)^2}\left( {{k^2} + {h^2}} \right) = 4{R^2}{k^2}{h^2}\]
\[ \Rightarrow {\left( {{k^2} + {h^2}} \right)^3} = 4{R^2}{k^2}{h^2}\]
Now, to find the locus we will replace \[h\] with \[x\] and \[k\] with \[y\] and rearrange,
\[ \Rightarrow {\left( {{x^2} + {y^2}} \right)^3} = 4{x^2}{y^2}{R^2}\]
Therefore, the locus of the foot of perpendicular from \[O\] on \[AB\] is \[{\left( {{x^2} + {y^2}} \right)^3} = 4{x^2}{y^2}{R^2}\] .
Hence, option (C) is correct.

Note: Centre of the circle and the foot of the perpendicular on the line \[AB\] are two distinct points. One might get confused that the foot of the perpendicular is the centre of the circle and also \[A\] lies on the x-axis, so the y coordinate of \[A\] will be zero. Similarly, \[B\] lies on the y-axis, so the x coordinate of \[B\] will be zero.