Answer
Verified
459.3k+ views
Hint: A square matrix A is said to be unitary if its transpose is its own inverse and all its entries should belong to complex numbers. A unitary matrix is a matrix whose inverse equals its conjugate transpose. Unitary matrices are the complex analog of real orthogonal matrices.
Complete step-by-step answer:
In mathematics, a complex square matrix A is unitary if its conjugate transpose \[{A^ * }\]is also its inverse.
A unitary matrix can be defined as a square complex matrix A for which,
\[A{A^*} = {A^*}A = I\]
\[{A^*}\]= Conjugate transpose of A
\[I\]= Identity matrix
When we are working with square matrices we are mapping a finite dimensional space to itself whenever we multiply.
Now let's take a situation where we are finding the determinant of the complete equation mentioned above.
\[A{A^*} = {A^*}A = I\]
Taking determinant of complete equation.
\[ \Rightarrow \left| {A{A^*}} \right| = \left| {{A^*}A} \right| = \left| I \right|\]
Separating the determinant of each term in the equation.
\[ \Rightarrow \left| {\left| A \right| \times \left| {{A^*}} \right|} \right| = \left| {\left| {{A^*}} \right| \times \left| A \right|} \right| = \left| I \right|\]
Removing the determinant above the whole equation of both sides.
\[ \Rightarrow \left| A \right| \times \left| {{A^*}} \right| = \left| {{A^*}} \right| \times \left| A \right| = 1\]
Now cancelling\[\left| {{A^*}} \right|\]from the equation we get,
\[ \Rightarrow \left| A \right| = \left| A \right| = 1\]
\[|A|\]can be a complex number with modulus/magnitude 1.
So, option (A) is the correct answer.
Note: If matrix A is called Unitary matrix then it satisfy this condition \[A{A^*} = {A^*}A = I\] where \[{A^*}\]= Transpose Conjugate of A = \[{\left( {A\prime } \right)^T}\] (first you Conjugate and then Transpose , you will get Unitary matrix)
Properties of Unitary matrix:
1) If A is a Unitary matrix then\[{A^{ - 1}}\]is also a Unitary matrix.
2) If A is a Unitary matrix then \[{A^*}\] is also a Unitary matrix.
3) If A&B are Unitary matrices, then A.B is a Unitary matrix.
4) If A is Unitary matrix then \[{A^{ - 1}} = {A^*}\]
5) If A is Unitary matrix then it's determinant is of Modulus Unity (always1).
Complete step-by-step answer:
In mathematics, a complex square matrix A is unitary if its conjugate transpose \[{A^ * }\]is also its inverse.
A unitary matrix can be defined as a square complex matrix A for which,
\[A{A^*} = {A^*}A = I\]
\[{A^*}\]= Conjugate transpose of A
\[I\]= Identity matrix
When we are working with square matrices we are mapping a finite dimensional space to itself whenever we multiply.
Now let's take a situation where we are finding the determinant of the complete equation mentioned above.
\[A{A^*} = {A^*}A = I\]
Taking determinant of complete equation.
\[ \Rightarrow \left| {A{A^*}} \right| = \left| {{A^*}A} \right| = \left| I \right|\]
Separating the determinant of each term in the equation.
\[ \Rightarrow \left| {\left| A \right| \times \left| {{A^*}} \right|} \right| = \left| {\left| {{A^*}} \right| \times \left| A \right|} \right| = \left| I \right|\]
Removing the determinant above the whole equation of both sides.
\[ \Rightarrow \left| A \right| \times \left| {{A^*}} \right| = \left| {{A^*}} \right| \times \left| A \right| = 1\]
Now cancelling\[\left| {{A^*}} \right|\]from the equation we get,
\[ \Rightarrow \left| A \right| = \left| A \right| = 1\]
\[|A|\]can be a complex number with modulus/magnitude 1.
So, option (A) is the correct answer.
Note: If matrix A is called Unitary matrix then it satisfy this condition \[A{A^*} = {A^*}A = I\] where \[{A^*}\]= Transpose Conjugate of A = \[{\left( {A\prime } \right)^T}\] (first you Conjugate and then Transpose , you will get Unitary matrix)
Properties of Unitary matrix:
1) If A is a Unitary matrix then\[{A^{ - 1}}\]is also a Unitary matrix.
2) If A is a Unitary matrix then \[{A^*}\] is also a Unitary matrix.
3) If A&B are Unitary matrices, then A.B is a Unitary matrix.
4) If A is Unitary matrix then \[{A^{ - 1}} = {A^*}\]
5) If A is Unitary matrix then it's determinant is of Modulus Unity (always1).
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers