Answer
Verified
495.9k+ views
Hint- Use the simple property of product of two sets by the use of basic definition. The product of two sets contains every element of one set related to each and every element of another set.
Complete step-by-step solution -
Given that: $A = \left\{ {1,2,3} \right\}$ and $B = \left\{ {2,4} \right\}$
We have to find out: $A \times B,B \times A,A \times A,B \times B{\text{ and }}\left( {A \times B} \right) \cap \left( {B \times A} \right)$
As we know that for two general sets $X = \left\{ {a,b} \right\}{\text{ and }}Y = \left\{ {p,q} \right\}$ product of the set is:
$X \times Y = \left\{ {\left( {a,p} \right),\left( {a,q} \right),\left( {b,p} \right),\left( {b,q} \right)} \right\}$
So using the above general result proceeding for the given problem we have:
$
A \times B = \left\{ {1,2,3} \right\} \times \left\{ {2,4} \right\} = \left\{ {\left( {1,2} \right),\left( {1,4} \right),\left( {2,2} \right),\left( {2,4} \right),\left( {3,2} \right),\left( {3,4} \right)} \right\} \\
B \times A = \left\{ {2,4} \right\} \times \left\{ {1,2,3} \right\} = \left\{ {\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {4,1} \right),\left( {4,2} \right),\left( {4,3} \right)} \right\} \\
A \times A = \left\{ {1,2,3} \right\} \times \left\{ {1,2,3} \right\} = \left\{ {\left( {1,1} \right),\left( {1,2} \right),\left( {1,3} \right),\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {3,1} \right),\left( {3,2} \right),\left( {3,3} \right)} \right\} \\
B \times B = \left\{ {2,4} \right\} \times \left\{ {2,4} \right\} = \left\{ {\left( {2,2} \right),\left( {2,4} \right),\left( {4,2} \right),\left( {4,4} \right)} \right\} \\
$
Now for $\left( {A \times B} \right) \cap \left( {B \times A} \right)$ that is the intersection of two sets, we have already found out $\left( {A \times B} \right){\text{ and }}\left( {B \times A} \right)$ in the above problem just we need to find out the common term between them.
From visualization of $\left( {A \times B} \right){\text{ and }}\left( {B \times A} \right)$ , we have only one common element i.e. $\left( {2,2} \right)$
So,
$\left( {A \times B} \right) \cap \left( {B \times A} \right) = \left\{ {\left( {2,2} \right)} \right\}$
Hence, all the values of the set have been found out.
Note- The Cartesian product of two sets A and B, denoted A × B, is the set of all possible ordered pairs where the elements of A are first and the elements of B are second. The intersection of two sets A and B, denoted by $A \cap B$ , is the set containing all elements of A that also belong to B (or equivalently, all elements of B that also belong to A).
Complete step-by-step solution -
Given that: $A = \left\{ {1,2,3} \right\}$ and $B = \left\{ {2,4} \right\}$
We have to find out: $A \times B,B \times A,A \times A,B \times B{\text{ and }}\left( {A \times B} \right) \cap \left( {B \times A} \right)$
As we know that for two general sets $X = \left\{ {a,b} \right\}{\text{ and }}Y = \left\{ {p,q} \right\}$ product of the set is:
$X \times Y = \left\{ {\left( {a,p} \right),\left( {a,q} \right),\left( {b,p} \right),\left( {b,q} \right)} \right\}$
So using the above general result proceeding for the given problem we have:
$
A \times B = \left\{ {1,2,3} \right\} \times \left\{ {2,4} \right\} = \left\{ {\left( {1,2} \right),\left( {1,4} \right),\left( {2,2} \right),\left( {2,4} \right),\left( {3,2} \right),\left( {3,4} \right)} \right\} \\
B \times A = \left\{ {2,4} \right\} \times \left\{ {1,2,3} \right\} = \left\{ {\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {4,1} \right),\left( {4,2} \right),\left( {4,3} \right)} \right\} \\
A \times A = \left\{ {1,2,3} \right\} \times \left\{ {1,2,3} \right\} = \left\{ {\left( {1,1} \right),\left( {1,2} \right),\left( {1,3} \right),\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {3,1} \right),\left( {3,2} \right),\left( {3,3} \right)} \right\} \\
B \times B = \left\{ {2,4} \right\} \times \left\{ {2,4} \right\} = \left\{ {\left( {2,2} \right),\left( {2,4} \right),\left( {4,2} \right),\left( {4,4} \right)} \right\} \\
$
Now for $\left( {A \times B} \right) \cap \left( {B \times A} \right)$ that is the intersection of two sets, we have already found out $\left( {A \times B} \right){\text{ and }}\left( {B \times A} \right)$ in the above problem just we need to find out the common term between them.
From visualization of $\left( {A \times B} \right){\text{ and }}\left( {B \times A} \right)$ , we have only one common element i.e. $\left( {2,2} \right)$
So,
$\left( {A \times B} \right) \cap \left( {B \times A} \right) = \left\{ {\left( {2,2} \right)} \right\}$
Hence, all the values of the set have been found out.
Note- The Cartesian product of two sets A and B, denoted A × B, is the set of all possible ordered pairs where the elements of A are first and the elements of B are second. The intersection of two sets A and B, denoted by $A \cap B$ , is the set containing all elements of A that also belong to B (or equivalently, all elements of B that also belong to A).
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE