
If $A = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right)$ and $B = \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right)$ , then verify that
${\left( {A + B} \right)^T} = {A^T} + {B^T}$
${\left( {A - B} \right)^T} = {A^T} - {B^T}$
Answer
623.7k+ views
Hint: Here ${X^T}$means the transpose of the matrix $X$. First find the transposes of the matrix and then solve accordingly in the problem by comparing the LHS and RHS.
Given that,
$A = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right)$ and $B = \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right)$
Consider $A + B$
$
A + B = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right) \\
\\
A + B = \left( {\begin{array}{*{20}{c}}
{ - 1 - 4}&{2 + 1}&{3 - 5} \\
{5 + 1}&{7 + 2}&{9 + 0} \\
{ - 2 + 1}&{1 + 3}&{1 + 1}
\end{array}} \right) \\
\\
A + B = \left( {\begin{array}{*{20}{c}}
{ - 5}&3&{ - 2} \\
6&9&9 \\
{ - 1}&4&2
\end{array}} \right) \\
$
Now consider $A - B$
$
A - B = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right) \\
\\
A - B = \left( {\begin{array}{*{20}{c}}
{ - 1 - ( - 4)}&{2 - 1}&{3 - ( - 5)} \\
{5 - 1}&{7 - 2}&{9 - 0} \\
{ - 2 - 1}&{1 - 3}&{1 - 1}
\end{array}} \right) \\
\\
A - B = \left( {\begin{array}{*{20}{c}}
3&1&8 \\
4&5&9 \\
{ - 3}&{ - 2}&0
\end{array}} \right) \\
$
Consider the transpose of $(A + B)$ i.e. ${(A + B)^T}$
$
{(A + B)^T} = {\left( {\begin{array}{*{20}{c}}
{ - 5}&3&{ - 2} \\
6&9&9 \\
{ - 1}&4&2
\end{array}} \right)^T} \\
\\
{(A + B)^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right) \\
\\
\therefore {(A + B)^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right)......................\left( 1 \right) \\
$
Now consider the transpose of $(A - B)$ i.e. ${(A - B)^T}$
$
{(A - B)^T} ={ \left( {\begin{array}{*{20}{c}}
3&1&8 \\
4&5&9 \\
{ - 3}&{ - 2}&0
\end{array}} \right)^T} \\
\\
{\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right) \\
\\
\therefore {\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right)........................\left( 2 \right) \\
$
In the same way find transpose of $A$ i.e. \[{A^T}\]
\[
{A^T} = {\left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right)^T} \\
\\
\therefore {A^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) \\
\]
Now similarly the transpose of \[B\] i.e. \[{B^T}\]
$
{B^T} = {\left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right)^T} \\
\\
\therefore {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
$
Now find ${A^T} + {B^T}$ i.e.
\[
{A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
\\
{A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1 - 4}&{5 + 1}&{ - 2 + 1} \\
{2 + 1}&{7 + 2}&{1 + 3} \\
{3 - 5}&{9 + 0}&{1 + 1}
\end{array}} \right) \\
\\
\therefore {A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right)..................................\left( 3 \right) \\
\]
Now find \[{A^T} - {B^T}\] i.e.
\[
{A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
\\
{A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1 + 4}&{5 - 1}&{ - 2 - 1} \\
{2 - 1}&{7 - 2}&{1 - 3} \\
{3 + 5}&{9 - 0}&{1 - 1}
\end{array}} \right) \\
\\
\therefore {A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right)................................................\left( 4 \right) \\
\]
From Equation \[\left( 1 \right)\]and Equation \[\left( 3 \right)\]we have
\[{\left( {A + B} \right)^T} = {A^T} + {B^T}\]
From Equation \[\left( 2 \right)\]and Equation \[\left( 4 \right)\] we have
\[{\left( {A - B} \right)^T} = {A^T} - {B^T}\]
Hence proved that ${\left( {A + B} \right)^T} = {A^T} + {B^T}$
${\left( {A - B} \right)^T} = {A^T} - {B^T}$
Note: From this problem it is clear that ${\left( {A + B} \right)^T} = {A^T} + {B^T}$is the property of “Transpose of a sum of matrices” and ${\left( {A - B} \right)^T} = {A^T} - {B^T}$is the property of “Transpose of subtraction of matrices”.
Given that,
$A = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right)$ and $B = \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right)$
Consider $A + B$
$
A + B = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right) \\
\\
A + B = \left( {\begin{array}{*{20}{c}}
{ - 1 - 4}&{2 + 1}&{3 - 5} \\
{5 + 1}&{7 + 2}&{9 + 0} \\
{ - 2 + 1}&{1 + 3}&{1 + 1}
\end{array}} \right) \\
\\
A + B = \left( {\begin{array}{*{20}{c}}
{ - 5}&3&{ - 2} \\
6&9&9 \\
{ - 1}&4&2
\end{array}} \right) \\
$
Now consider $A - B$
$
A - B = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right) \\
\\
A - B = \left( {\begin{array}{*{20}{c}}
{ - 1 - ( - 4)}&{2 - 1}&{3 - ( - 5)} \\
{5 - 1}&{7 - 2}&{9 - 0} \\
{ - 2 - 1}&{1 - 3}&{1 - 1}
\end{array}} \right) \\
\\
A - B = \left( {\begin{array}{*{20}{c}}
3&1&8 \\
4&5&9 \\
{ - 3}&{ - 2}&0
\end{array}} \right) \\
$
Consider the transpose of $(A + B)$ i.e. ${(A + B)^T}$
$
{(A + B)^T} = {\left( {\begin{array}{*{20}{c}}
{ - 5}&3&{ - 2} \\
6&9&9 \\
{ - 1}&4&2
\end{array}} \right)^T} \\
\\
{(A + B)^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right) \\
\\
\therefore {(A + B)^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right)......................\left( 1 \right) \\
$
Now consider the transpose of $(A - B)$ i.e. ${(A - B)^T}$
$
{(A - B)^T} ={ \left( {\begin{array}{*{20}{c}}
3&1&8 \\
4&5&9 \\
{ - 3}&{ - 2}&0
\end{array}} \right)^T} \\
\\
{\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right) \\
\\
\therefore {\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right)........................\left( 2 \right) \\
$
In the same way find transpose of $A$ i.e. \[{A^T}\]
\[
{A^T} = {\left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right)^T} \\
\\
\therefore {A^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) \\
\]
Now similarly the transpose of \[B\] i.e. \[{B^T}\]
$
{B^T} = {\left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right)^T} \\
\\
\therefore {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
$
Now find ${A^T} + {B^T}$ i.e.
\[
{A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
\\
{A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1 - 4}&{5 + 1}&{ - 2 + 1} \\
{2 + 1}&{7 + 2}&{1 + 3} \\
{3 - 5}&{9 + 0}&{1 + 1}
\end{array}} \right) \\
\\
\therefore {A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right)..................................\left( 3 \right) \\
\]
Now find \[{A^T} - {B^T}\] i.e.
\[
{A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
\\
{A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1 + 4}&{5 - 1}&{ - 2 - 1} \\
{2 - 1}&{7 - 2}&{1 - 3} \\
{3 + 5}&{9 - 0}&{1 - 1}
\end{array}} \right) \\
\\
\therefore {A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right)................................................\left( 4 \right) \\
\]
From Equation \[\left( 1 \right)\]and Equation \[\left( 3 \right)\]we have
\[{\left( {A + B} \right)^T} = {A^T} + {B^T}\]
From Equation \[\left( 2 \right)\]and Equation \[\left( 4 \right)\] we have
\[{\left( {A - B} \right)^T} = {A^T} - {B^T}\]
Hence proved that ${\left( {A + B} \right)^T} = {A^T} + {B^T}$
${\left( {A - B} \right)^T} = {A^T} - {B^T}$
Note: From this problem it is clear that ${\left( {A + B} \right)^T} = {A^T} + {B^T}$is the property of “Transpose of a sum of matrices” and ${\left( {A - B} \right)^T} = {A^T} - {B^T}$is the property of “Transpose of subtraction of matrices”.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

