If $A = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right)$ and $B = \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right)$ , then verify that
${\left( {A + B} \right)^T} = {A^T} + {B^T}$
${\left( {A - B} \right)^T} = {A^T} - {B^T}$
Answer
Verified
507.3k+ views
Hint: Here ${X^T}$means the transpose of the matrix $X$. First find the transposes of the matrix and then solve accordingly in the problem by comparing the LHS and RHS.
Given that,
$A = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right)$ and $B = \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right)$
Consider $A + B$
$
A + B = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right) \\
\\
A + B = \left( {\begin{array}{*{20}{c}}
{ - 1 - 4}&{2 + 1}&{3 - 5} \\
{5 + 1}&{7 + 2}&{9 + 0} \\
{ - 2 + 1}&{1 + 3}&{1 + 1}
\end{array}} \right) \\
\\
A + B = \left( {\begin{array}{*{20}{c}}
{ - 5}&3&{ - 2} \\
6&9&9 \\
{ - 1}&4&2
\end{array}} \right) \\
$
Now consider $A - B$
$
A - B = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right) \\
\\
A - B = \left( {\begin{array}{*{20}{c}}
{ - 1 - ( - 4)}&{2 - 1}&{3 - ( - 5)} \\
{5 - 1}&{7 - 2}&{9 - 0} \\
{ - 2 - 1}&{1 - 3}&{1 - 1}
\end{array}} \right) \\
\\
A - B = \left( {\begin{array}{*{20}{c}}
3&1&8 \\
4&5&9 \\
{ - 3}&{ - 2}&0
\end{array}} \right) \\
$
Consider the transpose of $(A + B)$ i.e. ${(A + B)^T}$
$
{(A + B)^T} = {\left( {\begin{array}{*{20}{c}}
{ - 5}&3&{ - 2} \\
6&9&9 \\
{ - 1}&4&2
\end{array}} \right)^T} \\
\\
{(A + B)^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right) \\
\\
\therefore {(A + B)^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right)......................\left( 1 \right) \\
$
Now consider the transpose of $(A - B)$ i.e. ${(A - B)^T}$
$
{(A - B)^T} ={ \left( {\begin{array}{*{20}{c}}
3&1&8 \\
4&5&9 \\
{ - 3}&{ - 2}&0
\end{array}} \right)^T} \\
\\
{\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right) \\
\\
\therefore {\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right)........................\left( 2 \right) \\
$
In the same way find transpose of $A$ i.e. \[{A^T}\]
\[
{A^T} = {\left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right)^T} \\
\\
\therefore {A^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) \\
\]
Now similarly the transpose of \[B\] i.e. \[{B^T}\]
$
{B^T} = {\left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right)^T} \\
\\
\therefore {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
$
Now find ${A^T} + {B^T}$ i.e.
\[
{A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
\\
{A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1 - 4}&{5 + 1}&{ - 2 + 1} \\
{2 + 1}&{7 + 2}&{1 + 3} \\
{3 - 5}&{9 + 0}&{1 + 1}
\end{array}} \right) \\
\\
\therefore {A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right)..................................\left( 3 \right) \\
\]
Now find \[{A^T} - {B^T}\] i.e.
\[
{A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
\\
{A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1 + 4}&{5 - 1}&{ - 2 - 1} \\
{2 - 1}&{7 - 2}&{1 - 3} \\
{3 + 5}&{9 - 0}&{1 - 1}
\end{array}} \right) \\
\\
\therefore {A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right)................................................\left( 4 \right) \\
\]
From Equation \[\left( 1 \right)\]and Equation \[\left( 3 \right)\]we have
\[{\left( {A + B} \right)^T} = {A^T} + {B^T}\]
From Equation \[\left( 2 \right)\]and Equation \[\left( 4 \right)\] we have
\[{\left( {A - B} \right)^T} = {A^T} - {B^T}\]
Hence proved that ${\left( {A + B} \right)^T} = {A^T} + {B^T}$
${\left( {A - B} \right)^T} = {A^T} - {B^T}$
Note: From this problem it is clear that ${\left( {A + B} \right)^T} = {A^T} + {B^T}$is the property of “Transpose of a sum of matrices” and ${\left( {A - B} \right)^T} = {A^T} - {B^T}$is the property of “Transpose of subtraction of matrices”.
Given that,
$A = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right)$ and $B = \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right)$
Consider $A + B$
$
A + B = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right) \\
\\
A + B = \left( {\begin{array}{*{20}{c}}
{ - 1 - 4}&{2 + 1}&{3 - 5} \\
{5 + 1}&{7 + 2}&{9 + 0} \\
{ - 2 + 1}&{1 + 3}&{1 + 1}
\end{array}} \right) \\
\\
A + B = \left( {\begin{array}{*{20}{c}}
{ - 5}&3&{ - 2} \\
6&9&9 \\
{ - 1}&4&2
\end{array}} \right) \\
$
Now consider $A - B$
$
A - B = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right) \\
\\
A - B = \left( {\begin{array}{*{20}{c}}
{ - 1 - ( - 4)}&{2 - 1}&{3 - ( - 5)} \\
{5 - 1}&{7 - 2}&{9 - 0} \\
{ - 2 - 1}&{1 - 3}&{1 - 1}
\end{array}} \right) \\
\\
A - B = \left( {\begin{array}{*{20}{c}}
3&1&8 \\
4&5&9 \\
{ - 3}&{ - 2}&0
\end{array}} \right) \\
$
Consider the transpose of $(A + B)$ i.e. ${(A + B)^T}$
$
{(A + B)^T} = {\left( {\begin{array}{*{20}{c}}
{ - 5}&3&{ - 2} \\
6&9&9 \\
{ - 1}&4&2
\end{array}} \right)^T} \\
\\
{(A + B)^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right) \\
\\
\therefore {(A + B)^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right)......................\left( 1 \right) \\
$
Now consider the transpose of $(A - B)$ i.e. ${(A - B)^T}$
$
{(A - B)^T} ={ \left( {\begin{array}{*{20}{c}}
3&1&8 \\
4&5&9 \\
{ - 3}&{ - 2}&0
\end{array}} \right)^T} \\
\\
{\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right) \\
\\
\therefore {\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right)........................\left( 2 \right) \\
$
In the same way find transpose of $A$ i.e. \[{A^T}\]
\[
{A^T} = {\left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right)^T} \\
\\
\therefore {A^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) \\
\]
Now similarly the transpose of \[B\] i.e. \[{B^T}\]
$
{B^T} = {\left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right)^T} \\
\\
\therefore {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
$
Now find ${A^T} + {B^T}$ i.e.
\[
{A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
\\
{A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1 - 4}&{5 + 1}&{ - 2 + 1} \\
{2 + 1}&{7 + 2}&{1 + 3} \\
{3 - 5}&{9 + 0}&{1 + 1}
\end{array}} \right) \\
\\
\therefore {A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right)..................................\left( 3 \right) \\
\]
Now find \[{A^T} - {B^T}\] i.e.
\[
{A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
\\
{A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1 + 4}&{5 - 1}&{ - 2 - 1} \\
{2 - 1}&{7 - 2}&{1 - 3} \\
{3 + 5}&{9 - 0}&{1 - 1}
\end{array}} \right) \\
\\
\therefore {A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right)................................................\left( 4 \right) \\
\]
From Equation \[\left( 1 \right)\]and Equation \[\left( 3 \right)\]we have
\[{\left( {A + B} \right)^T} = {A^T} + {B^T}\]
From Equation \[\left( 2 \right)\]and Equation \[\left( 4 \right)\] we have
\[{\left( {A - B} \right)^T} = {A^T} - {B^T}\]
Hence proved that ${\left( {A + B} \right)^T} = {A^T} + {B^T}$
${\left( {A - B} \right)^T} = {A^T} - {B^T}$
Note: From this problem it is clear that ${\left( {A + B} \right)^T} = {A^T} + {B^T}$is the property of “Transpose of a sum of matrices” and ${\left( {A - B} \right)^T} = {A^T} - {B^T}$is the property of “Transpose of subtraction of matrices”.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE