Answer
Verified
453.3k+ views
Hint: As you can see, this question is based on matrices. You must be familiar with the concept of matrices. Matric is defined as a set of numbers arranged in rows and columns so as to form a rectangular array. You are given a square matrix A and you need to find an adjoint of \[(3{A^2} + 12A)\] . The adjoint of a square matrix \[A = {\left[ {{a_{ij}}} \right]_{n \times n}}\] is defined as the transpose of the matrix \[{\left[ {{a_{ij}}} \right]_{n \times n}}\] , where \[{a_{ij}}\] is the cofactor of the element \[{a_{ij}}\] and adjoint of matrix A is denoted as adj A.
Complete step by step solution
Given: The matrix A is given as \[A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right]\]and we need to choose the value of \[adj(3{A^2} + 12A)\] from the option mentioned in the question.
To find out the matrix \[3{A^2}\] using the matrix A.
Hence, we have,
\[A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right]\]
To find out the matrix \[3{A^2}\], we need to multiply the matrix A with itself and then multiply it again with 3.
So,
\[
3{A^2} = 3\left( {A \cdot A} \right) \\
\Rightarrow 3{A^2} = 3\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right] \\
\Rightarrow 3{A^2} = 3\left[ {\begin{array}{*{20}{c}}
{16}&{ - 9} \\
{ - 12}&{13}
\end{array}} \right] (Using{\text{ }}the{\text{ }}law{\text{ }}of{\text{ }}product{\text{ }}of{\text{ }}two{\text{ }}matrices) \\
\Rightarrow 3{A^2} = \left[ {\begin{array}{*{20}{c}}
{48}&{ - 27} \\
{ - 36}&{39}
\end{array}} \right] \\
\]
To find out the matrix 12A
We are given, \[A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right]\]
So,
\[
\Rightarrow 12A = 12\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right] \\
\Rightarrow 12A = 12\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right] \\
\Rightarrow 12A = \left[ {\begin{array}{*{20}{c}}
{24}&{ - 36} \\
{ - 48}&{12}
\end{array}} \right] \\
\]
To find out the matrix \[3{A^2} + 12A\]
We have,
\[
\Rightarrow 3{A^2} = \left[ {\begin{array}{*{20}{c}}
{48}&{ - 27} \\
{ - 36}&{39}
\end{array}} \right] \,and \\
\Rightarrow 12A = \left[ {\begin{array}{*{20}{c}}
{24}&{ - 36} \\
{ - 48}&{12}
\end{array}} \right] \\
\]
So, we get
\[
\Rightarrow 3{A^2} + 12A = \left[ {\begin{array}{*{20}{c}}
{48}&{ - 27} \\
{ - 36}&{39}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{24}&{ - 36} \\
{ - 48}&{12}
\end{array}} \right] \\
\Rightarrow 3{A^2} + 12A = \left[ {\begin{array}{*{20}{c}}
{72}&{ - 63} \\
{ - 84}&{51}
\end{array}} \right] \\
\]
To find out \[adj(3{A^2} + 12A)\]
We know that adjoint of a matrix \[P = \left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}} \\
{{a_{21}}}&{{a_{22}}}
\end{array}} \right]\] is given by
\[
Adj{\text{ }}P{\text{ }} = {\text{ }}Transpose{\text{ }}of\;\left[ {\begin{array}{*{20}{c}}
{cofacto{r_{11}}}&{cofacto{r_{12}}} \\
{cofacto{r_{21}}}&{cofacto{r_{22}}}
\end{array}} \right] \\
For,\,\,3{A^2} + 12A = \left[ {\begin{array}{*{20}{c}}
{72}&{ - 63} \\
{ - 84}&{51}
\end{array}} \right] \\
\]
We have,
\[
72:cofacto{r_{11}} = {( - 1)^{1 + 1}} \times minor \\
= {( - 1)^2} \times 51 \\
= 51 \\
- 82:cofacto{r_{21}} = {( - 1)^{2 + 1}} \times minor \\
= {( - 1)^3} \times ( - 63) \\
= 63 \\
- 63:cofacto{r_{12}} = {( - 1)^{1 + 2}} \times minor \\
= {( - 1)^3} \times ( - 84) \\
= 84 \\
51:cofacto{r_{22}} = {( - 1)^{2 + 2}} \times minor \\
= {( - 1)^3} \times (72) \\
= 72 \\
\]
After putting the values of the cofactors in the transpose matrix, we obtain,
\[
adj(3{A^2} + 12A) = {\text{ }}Transpose{\text{ }}of\;\left[ {\begin{array}{*{20}{c}}
{51}&{84} \\
{63}&{72}
\end{array}} \right] \\
So, \\
adj(3{A^2} + 12A) = \left[ {\begin{array}{*{20}{c}}
{51}&{84} \\
{63}&{72}
\end{array}} \right] \\
\]
Hence, the correct option is B.
Note: Students often forget to find the transpose of the matrix and make mistakes. You should always be careful and find the transpose and then only, it will give you the correct value of the adjoint of that matrix. Also, not to make mistakes in multiplication of two matrices.
Complete step by step solution
Given: The matrix A is given as \[A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right]\]and we need to choose the value of \[adj(3{A^2} + 12A)\] from the option mentioned in the question.
To find out the matrix \[3{A^2}\] using the matrix A.
Hence, we have,
\[A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right]\]
To find out the matrix \[3{A^2}\], we need to multiply the matrix A with itself and then multiply it again with 3.
So,
\[
3{A^2} = 3\left( {A \cdot A} \right) \\
\Rightarrow 3{A^2} = 3\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right] \\
\Rightarrow 3{A^2} = 3\left[ {\begin{array}{*{20}{c}}
{16}&{ - 9} \\
{ - 12}&{13}
\end{array}} \right] (Using{\text{ }}the{\text{ }}law{\text{ }}of{\text{ }}product{\text{ }}of{\text{ }}two{\text{ }}matrices) \\
\Rightarrow 3{A^2} = \left[ {\begin{array}{*{20}{c}}
{48}&{ - 27} \\
{ - 36}&{39}
\end{array}} \right] \\
\]
To find out the matrix 12A
We are given, \[A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right]\]
So,
\[
\Rightarrow 12A = 12\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right] \\
\Rightarrow 12A = 12\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right] \\
\Rightarrow 12A = \left[ {\begin{array}{*{20}{c}}
{24}&{ - 36} \\
{ - 48}&{12}
\end{array}} \right] \\
\]
To find out the matrix \[3{A^2} + 12A\]
We have,
\[
\Rightarrow 3{A^2} = \left[ {\begin{array}{*{20}{c}}
{48}&{ - 27} \\
{ - 36}&{39}
\end{array}} \right] \,and \\
\Rightarrow 12A = \left[ {\begin{array}{*{20}{c}}
{24}&{ - 36} \\
{ - 48}&{12}
\end{array}} \right] \\
\]
So, we get
\[
\Rightarrow 3{A^2} + 12A = \left[ {\begin{array}{*{20}{c}}
{48}&{ - 27} \\
{ - 36}&{39}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{24}&{ - 36} \\
{ - 48}&{12}
\end{array}} \right] \\
\Rightarrow 3{A^2} + 12A = \left[ {\begin{array}{*{20}{c}}
{72}&{ - 63} \\
{ - 84}&{51}
\end{array}} \right] \\
\]
To find out \[adj(3{A^2} + 12A)\]
We know that adjoint of a matrix \[P = \left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}} \\
{{a_{21}}}&{{a_{22}}}
\end{array}} \right]\] is given by
\[
Adj{\text{ }}P{\text{ }} = {\text{ }}Transpose{\text{ }}of\;\left[ {\begin{array}{*{20}{c}}
{cofacto{r_{11}}}&{cofacto{r_{12}}} \\
{cofacto{r_{21}}}&{cofacto{r_{22}}}
\end{array}} \right] \\
For,\,\,3{A^2} + 12A = \left[ {\begin{array}{*{20}{c}}
{72}&{ - 63} \\
{ - 84}&{51}
\end{array}} \right] \\
\]
We have,
\[
72:cofacto{r_{11}} = {( - 1)^{1 + 1}} \times minor \\
= {( - 1)^2} \times 51 \\
= 51 \\
- 82:cofacto{r_{21}} = {( - 1)^{2 + 1}} \times minor \\
= {( - 1)^3} \times ( - 63) \\
= 63 \\
- 63:cofacto{r_{12}} = {( - 1)^{1 + 2}} \times minor \\
= {( - 1)^3} \times ( - 84) \\
= 84 \\
51:cofacto{r_{22}} = {( - 1)^{2 + 2}} \times minor \\
= {( - 1)^3} \times (72) \\
= 72 \\
\]
After putting the values of the cofactors in the transpose matrix, we obtain,
\[
adj(3{A^2} + 12A) = {\text{ }}Transpose{\text{ }}of\;\left[ {\begin{array}{*{20}{c}}
{51}&{84} \\
{63}&{72}
\end{array}} \right] \\
So, \\
adj(3{A^2} + 12A) = \left[ {\begin{array}{*{20}{c}}
{51}&{84} \\
{63}&{72}
\end{array}} \right] \\
\]
Hence, the correct option is B.
Note: Students often forget to find the transpose of the matrix and make mistakes. You should always be careful and find the transpose and then only, it will give you the correct value of the adjoint of that matrix. Also, not to make mistakes in multiplication of two matrices.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE