If \[A = \left( {\begin{array}{*{20}{c}}
x&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right)\] is a nonsingular matrix then find ${A^{ - 1}}$ by elementary row transformations. Hence, find the inverse of $\left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&1&0 \\
0&0&{ - 1}
\end{array}} \right)$.
Answer
Verified
466.2k+ views
Hint: For elementary row transformation we use $A = AI$ , to provide us the required solution which provides us certain operation to the matrix which can provide the inverse as in this question we can determine the matrix by applying the operation . then we compare it with $I = A{A^{ - 1}}$ to get the required solution.
Now in this we perform steps
1. Swap rows
2. Multiply or divide each elements in a row by a constant
3. Replace a row by adding or subtracting a multiple of another row to it.
We must do it to the whole row
Complete step-by-step answer:
Given:
\[A = \left( {\begin{array}{*{20}{c}}
x&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right)\]
So we know that $A = AI$
$\Rightarrow$\[\left( {\begin{array}{*{20}{c}}
x&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right) = A\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)\]
Now in this we have to convert \[A = \left( {\begin{array}{*{20}{c}}
x&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right)\] in identity matrix $\because A{A^{ - 1}} = I$
So we perform row operation on it
$(1)$ divide first row to $x$ that is ${R_1} \to \dfrac{{{R_1}}}{x}$
$\Rightarrow$\[\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right) = A\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{x}}&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)\]
2. divide first row to $y$ that is ${R_2} \to \dfrac{{{R_2}}}{y}$
$\Rightarrow$\[\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&z
\end{array}} \right) = A\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{x}}&0&0 \\
0&{\dfrac{1}{y}}&0 \\
0&0&1
\end{array}} \right)\]
3. divide first row to $z$ that is ${R_3} \to \dfrac{{{R_3}}}{z}$
$\Rightarrow$\[\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = A\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{x}}&0&0 \\
0&{\dfrac{1}{y}}&0 \\
0&0&{\dfrac{1}{z}}
\end{array}} \right)\]
Now we compare it with
$I = A{A^{ - 1}}$
We get
$\Rightarrow$\[{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{1}{x}}&0&0 \\
0&{\dfrac{1}{y}}&0 \\
0&0&{\dfrac{1}{z}}
\end{array}} \right)\]
Now we have to find the inverse of $\left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&1&0 \\
0&0&{ - 1}
\end{array}} \right)$
As we see that inverse of \[A = \left( {\begin{array}{*{20}{c}}
x&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right)\] is \[\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{x}}&0&0 \\
0&{\dfrac{1}{y}}&0 \\
0&0&{\dfrac{1}{z}}
\end{array}} \right)\]
Now from here we can say $x = 2$, $y = 1$ and $z = - 1$ put these values in the inverse of matrix $A$
So inverse is \[\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&0&0 \\
0&{\dfrac{1}{1}}&0 \\
0&0&{\dfrac{1}{{ - 1}}}
\end{array}} \right)\]
So final answer inverse of $\left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&1&0 \\
0&0&{ - 1}
\end{array}} \right)$ is \[\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&0&0 \\
0&1&0 \\
0&0&{ - 1}
\end{array}} \right)\] .
Note: Inverse of any matrix can be found by using
1. First we have to find determinant of given Matrix
2. Second we have to find adjoint of given matrix by using $Adj(A) = {[cof({a_{ij}})]^T}$
After this we use this simple formula to find inverse
${A^{ - 1}} = \dfrac{1}{{\det (A)}}adj(A)$ .
An inverse can be found only of that matrix which is a square matrix that means order of row and order of column is the same.
And the determinant of the matrix must not be zero. This is instead of the real number not being zero to have an inverse, the determinant must not be zero to have an inverse.
Now in this we perform steps
1. Swap rows
2. Multiply or divide each elements in a row by a constant
3. Replace a row by adding or subtracting a multiple of another row to it.
We must do it to the whole row
Complete step-by-step answer:
Given:
\[A = \left( {\begin{array}{*{20}{c}}
x&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right)\]
So we know that $A = AI$
$\Rightarrow$\[\left( {\begin{array}{*{20}{c}}
x&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right) = A\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)\]
Now in this we have to convert \[A = \left( {\begin{array}{*{20}{c}}
x&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right)\] in identity matrix $\because A{A^{ - 1}} = I$
So we perform row operation on it
$(1)$ divide first row to $x$ that is ${R_1} \to \dfrac{{{R_1}}}{x}$
$\Rightarrow$\[\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right) = A\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{x}}&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)\]
2. divide first row to $y$ that is ${R_2} \to \dfrac{{{R_2}}}{y}$
$\Rightarrow$\[\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&z
\end{array}} \right) = A\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{x}}&0&0 \\
0&{\dfrac{1}{y}}&0 \\
0&0&1
\end{array}} \right)\]
3. divide first row to $z$ that is ${R_3} \to \dfrac{{{R_3}}}{z}$
$\Rightarrow$\[\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = A\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{x}}&0&0 \\
0&{\dfrac{1}{y}}&0 \\
0&0&{\dfrac{1}{z}}
\end{array}} \right)\]
Now we compare it with
$I = A{A^{ - 1}}$
We get
$\Rightarrow$\[{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{1}{x}}&0&0 \\
0&{\dfrac{1}{y}}&0 \\
0&0&{\dfrac{1}{z}}
\end{array}} \right)\]
Now we have to find the inverse of $\left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&1&0 \\
0&0&{ - 1}
\end{array}} \right)$
As we see that inverse of \[A = \left( {\begin{array}{*{20}{c}}
x&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right)\] is \[\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{x}}&0&0 \\
0&{\dfrac{1}{y}}&0 \\
0&0&{\dfrac{1}{z}}
\end{array}} \right)\]
Now from here we can say $x = 2$, $y = 1$ and $z = - 1$ put these values in the inverse of matrix $A$
So inverse is \[\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&0&0 \\
0&{\dfrac{1}{1}}&0 \\
0&0&{\dfrac{1}{{ - 1}}}
\end{array}} \right)\]
So final answer inverse of $\left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&1&0 \\
0&0&{ - 1}
\end{array}} \right)$ is \[\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&0&0 \\
0&1&0 \\
0&0&{ - 1}
\end{array}} \right)\] .
Note: Inverse of any matrix can be found by using
1. First we have to find determinant of given Matrix
2. Second we have to find adjoint of given matrix by using $Adj(A) = {[cof({a_{ij}})]^T}$
After this we use this simple formula to find inverse
${A^{ - 1}} = \dfrac{1}{{\det (A)}}adj(A)$ .
An inverse can be found only of that matrix which is a square matrix that means order of row and order of column is the same.
And the determinant of the matrix must not be zero. This is instead of the real number not being zero to have an inverse, the determinant must not be zero to have an inverse.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE