Answer
Verified
483k+ views
Hint: To solve these types of question we will assume a variable which is divisible by both 2 and 3 and then through that number, we will check the divisibility of another number.
Complete step-by-step solution -
In the question given, we have to find the number(s) by which any number will be divisible when the number is divisible by both 2 and 3. To do this, we assume that a variable is divisible by both 2 and 3. Let this variable be ‘p’. We know that if the number p is divisible by 2, then the least power of 2 in that number will be equal to 1. Similarly, if the number p is divisible by 3, then the least power of 3 in that number will be equal to 1. Thus, we can say that p will be multiplication of 2 and 3 and a constant. Thus, we get
p = 2 x 3 x k ……………….(i)
where k can have any integer value. On simplifying the equation (i) we get,
p = 6k
On rearranging terms, we get,
$\dfrac{p}{6}=k$
This means that when we will divide p by 6, we will get a constant. This k will be the quotient of division. Now, we know that if quotient ‘k’ is a natural number and upon division, if it leaves the remainder 0 then we will say that p is divisible by 6. Thus, we can say a number divisible by 2 and 3 both will also be divisible by 6.
Hence option (b) is correct.
Note: The alternate method to solve this question is by finding the LCM of the two numbers which are divisible. The LCM will also be divisible by 6. In the above case, the LCM of 2 and 3 is 6. Hence the number is divisible by 6.
Complete step-by-step solution -
In the question given, we have to find the number(s) by which any number will be divisible when the number is divisible by both 2 and 3. To do this, we assume that a variable is divisible by both 2 and 3. Let this variable be ‘p’. We know that if the number p is divisible by 2, then the least power of 2 in that number will be equal to 1. Similarly, if the number p is divisible by 3, then the least power of 3 in that number will be equal to 1. Thus, we can say that p will be multiplication of 2 and 3 and a constant. Thus, we get
p = 2 x 3 x k ……………….(i)
where k can have any integer value. On simplifying the equation (i) we get,
p = 6k
On rearranging terms, we get,
$\dfrac{p}{6}=k$
This means that when we will divide p by 6, we will get a constant. This k will be the quotient of division. Now, we know that if quotient ‘k’ is a natural number and upon division, if it leaves the remainder 0 then we will say that p is divisible by 6. Thus, we can say a number divisible by 2 and 3 both will also be divisible by 6.
Hence option (b) is correct.
Note: The alternate method to solve this question is by finding the LCM of the two numbers which are divisible. The LCM will also be divisible by 6. In the above case, the LCM of 2 and 3 is 6. Hence the number is divisible by 6.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers