If A = $\{ x \in {\rm N}:{\text{x is a multiple of }}3\} $ and B = $\{ x \in {\rm N}:{\text{x is a multiple of 6}}\} $ then A-B is equals to
\[
A)\{ 6,12,18,.....\} \\
B)\{ 3,6,9,12,......\} \\
C)\{ 3,9,15,21,.....\} \\
D){\text{none of the above}} \\
\]
Answer
Verified
511.2k+ views
Hint: Here to proceed the solution we need to know the multiples of 3 and 6. Make set A and set B as per given condition.
Here we are given with two sets where with the condition, Where
A = $\{ x \in {\rm N}:{\text{x is a multiple of }}3\} $
Here set A is a multiple of 3 which are natural numbers.
Then $A = \{ 3,6,9,12,15,18,.......\} $
$B = \{ x \in {\rm N}:{\text{x is a multiple of 6}}\} $
Here set B is a multiple of 6 which are natural numbers.
Then $B = \{ 6,12,18,24,.....\} $
Now we got both the values of set A and set B
Then
$
A - B = \{ 3,6,9,12,15,18,.....\} - \{ 6,12,18,24,30,....\} \\
A - B = \{ 3,9,12,15,21,.....\} \\
$
Here A-B means we have removed the element of set B from set A.
Option C is the correct answer.
NOTE: In these problems first we have to find the value of set A by given condition and in the same way we have to find the values of set B .Later we have to find A-B which means we have to subtract values of set B from set A. In this type of problem mainly we have to focus on the conditions given to the sets because different sets have different conditions.
Here we are given with two sets where with the condition, Where
A = $\{ x \in {\rm N}:{\text{x is a multiple of }}3\} $
Here set A is a multiple of 3 which are natural numbers.
Then $A = \{ 3,6,9,12,15,18,.......\} $
$B = \{ x \in {\rm N}:{\text{x is a multiple of 6}}\} $
Here set B is a multiple of 6 which are natural numbers.
Then $B = \{ 6,12,18,24,.....\} $
Now we got both the values of set A and set B
Then
$
A - B = \{ 3,6,9,12,15,18,.....\} - \{ 6,12,18,24,30,....\} \\
A - B = \{ 3,9,12,15,21,.....\} \\
$
Here A-B means we have removed the element of set B from set A.
Option C is the correct answer.
NOTE: In these problems first we have to find the value of set A by given condition and in the same way we have to find the values of set B .Later we have to find A-B which means we have to subtract values of set B from set A. In this type of problem mainly we have to focus on the conditions given to the sets because different sets have different conditions.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE