
If ab > -1, bc > -1 and ca > -1, then the value of
${\cot ^{ - 1}}\left( {\dfrac{{ab + 1}}{{a - b}}} \right) + {\cot ^{ - 1}}\left( {\dfrac{{bc + 1}}{{b - c}}} \right) + {\cot ^{ - 1}}\left( {\dfrac{{ca + 1}}{{c - a}}} \right)$ is
$\left( A \right) - 1$
$\left( B \right){\cot ^{ - 1}}\left( {a + b + c} \right)$
$\left( C \right){\cot ^{ - 1}}\left( {abc} \right)$
$\left( D \right)0$
$\left( E \right){\tan ^{ - 1}}\left( {a + b + c} \right)$
Answer
584.7k+ views
Hint– In this particular question use the concept that ($\cot x = \dfrac{1}{{\tan x}}$), (${\tan ^{ - 1}}a + {\tan ^{ - 1}}b = {\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{1 - ab}}} \right)$) and (${\tan ^{ - 1}}\left( { - \theta } \right) = - {\tan ^{ - 1}}\left( \theta \right)$) so use these basic properties of trigonometry to reach the solution of the given problem.
Complete step-by-step answer:
Given equation is
${\cot ^{ - 1}}\left( {\dfrac{{ab + 1}}{{a - b}}} \right) + {\cot ^{ - 1}}\left( {\dfrac{{bc + 1}}{{b - c}}} \right) + {\cot ^{ - 1}}\left( {\dfrac{{ca + 1}}{{c - a}}} \right)$
Consider $x = {\cot ^{ - 1}}A$
Now shift cot inverse to L.H.S
$ \Rightarrow \cot x = A$
Now as we know that $\cot x = \dfrac{1}{{\tan x}}$ so, substitute this value in above equation we have,
$ \Rightarrow \dfrac{1}{{\tan x}} = A$
$ \Rightarrow \tan x = \dfrac{1}{A}$
Now shift tan to R.H.S
$ \Rightarrow x = {\tan ^{ - 1}}\dfrac{1}{A}$
$ \Rightarrow {\cot ^{ - 1}}A = {\tan ^{ - 1}}\dfrac{1}{A}$ So, use this property in given equation we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{a - b}}{{ab + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{b - c}}{{bc + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
Now as we know that ${\tan ^{ - 1}}a + {\tan ^{ - 1}}b = {\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{1 - ab}}} \right)$ so, use this property in above equation we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{a - b}}{{ab + 1}} + \dfrac{{b - c}}{{bc + 1}}}}{{1 - \left( {\dfrac{{a - b}}{{ab + 1}} \times \dfrac{{b - c}}{{bc + 1}}} \right)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
Now simplify the above equation we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {a - b} \right)\left( {bc + 1} \right) + \left( {b - c} \right)\left( {ab + 1} \right)}}{{\left( {ab + 1} \right)\left( {bc + 1} \right) - \left( {a - b} \right)\left( {b - c} \right)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
Now again simplify the above equation we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{abc + a - {b^2}c - b + a{b^2} + b - abc - c}}{{a{b^2}c + ab + bc + 1 - ab + ac + {b^2} - bc}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
Now cancel out the terms
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{a - {b^2}c + a{b^2} - c}}{{a{b^2}c + 1 + ac + {b^2}}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {a - c} \right) + {b^2}\left( {a - c} \right)}}{{\left( {1 + {b^2}} \right) + ac\left( {1 + {b^2}} \right)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {a - c} \right)\left( {1 + {b^2}} \right)}}{{\left( {1 + {b^2}} \right)\left( {1 + ac} \right)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
Now cancel out the common terms we have
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{a - c}}{{ca + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - \left( {c - a} \right)}}{{ca + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
Now as we know ${\tan ^{ - 1}}\left( { - \theta } \right) = - {\tan ^{ - 1}}\left( \theta \right)$ so, use this property in above equation we have,
$ \Rightarrow - {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
Now as we see both terms are same but opposite sign
$ \Rightarrow {\cot ^{ - 1}}\left( {\dfrac{{ab + 1}}{{a - b}}} \right) + {\cot ^{ - 1}}\left( {\dfrac{{bc + 1}}{{b - c}}} \right) + {\cot ^{ - 1}}\left( {\dfrac{{ca + 1}}{{c - a}}} \right) = 0$
Hence option (D) is correct.
Note – Whenever we face such types of questions the key concept we have to remember is that always recall the basic trigonometric properties whatever is used in this question is all stated up, then first convert the given equation in the terms of tan then apply the formula of (${\tan ^{ - 1}}a + {\tan ^{ - 1}}b$) and simplify as above then further simplify using similar properties as above we will get the required answer.
Complete step-by-step answer:
Given equation is
${\cot ^{ - 1}}\left( {\dfrac{{ab + 1}}{{a - b}}} \right) + {\cot ^{ - 1}}\left( {\dfrac{{bc + 1}}{{b - c}}} \right) + {\cot ^{ - 1}}\left( {\dfrac{{ca + 1}}{{c - a}}} \right)$
Consider $x = {\cot ^{ - 1}}A$
Now shift cot inverse to L.H.S
$ \Rightarrow \cot x = A$
Now as we know that $\cot x = \dfrac{1}{{\tan x}}$ so, substitute this value in above equation we have,
$ \Rightarrow \dfrac{1}{{\tan x}} = A$
$ \Rightarrow \tan x = \dfrac{1}{A}$
Now shift tan to R.H.S
$ \Rightarrow x = {\tan ^{ - 1}}\dfrac{1}{A}$
$ \Rightarrow {\cot ^{ - 1}}A = {\tan ^{ - 1}}\dfrac{1}{A}$ So, use this property in given equation we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{a - b}}{{ab + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{b - c}}{{bc + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
Now as we know that ${\tan ^{ - 1}}a + {\tan ^{ - 1}}b = {\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{1 - ab}}} \right)$ so, use this property in above equation we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{a - b}}{{ab + 1}} + \dfrac{{b - c}}{{bc + 1}}}}{{1 - \left( {\dfrac{{a - b}}{{ab + 1}} \times \dfrac{{b - c}}{{bc + 1}}} \right)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
Now simplify the above equation we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {a - b} \right)\left( {bc + 1} \right) + \left( {b - c} \right)\left( {ab + 1} \right)}}{{\left( {ab + 1} \right)\left( {bc + 1} \right) - \left( {a - b} \right)\left( {b - c} \right)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
Now again simplify the above equation we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{abc + a - {b^2}c - b + a{b^2} + b - abc - c}}{{a{b^2}c + ab + bc + 1 - ab + ac + {b^2} - bc}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
Now cancel out the terms
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{a - {b^2}c + a{b^2} - c}}{{a{b^2}c + 1 + ac + {b^2}}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {a - c} \right) + {b^2}\left( {a - c} \right)}}{{\left( {1 + {b^2}} \right) + ac\left( {1 + {b^2}} \right)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {a - c} \right)\left( {1 + {b^2}} \right)}}{{\left( {1 + {b^2}} \right)\left( {1 + ac} \right)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
Now cancel out the common terms we have
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{a - c}}{{ca + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - \left( {c - a} \right)}}{{ca + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
Now as we know ${\tan ^{ - 1}}\left( { - \theta } \right) = - {\tan ^{ - 1}}\left( \theta \right)$ so, use this property in above equation we have,
$ \Rightarrow - {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{c - a}}{{ca + 1}}} \right)$
Now as we see both terms are same but opposite sign
$ \Rightarrow {\cot ^{ - 1}}\left( {\dfrac{{ab + 1}}{{a - b}}} \right) + {\cot ^{ - 1}}\left( {\dfrac{{bc + 1}}{{b - c}}} \right) + {\cot ^{ - 1}}\left( {\dfrac{{ca + 1}}{{c - a}}} \right) = 0$
Hence option (D) is correct.
Note – Whenever we face such types of questions the key concept we have to remember is that always recall the basic trigonometric properties whatever is used in this question is all stated up, then first convert the given equation in the terms of tan then apply the formula of (${\tan ^{ - 1}}a + {\tan ^{ - 1}}b$) and simplify as above then further simplify using similar properties as above we will get the required answer.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

