
If a:b = 2:1, b:c = 1:3, c:d = 2:3 and d:e = 1:2, find a:b:c:d:e.
Answer
593.7k+ views
Hint: This a question of ratio and proportions. The concept of ratio is similar to division. The first number is taken as numerator and second as denominator. For example-
X:Y = 1:2 is the same as $\dfrac{\mathrm X}{\mathrm Y}=\dfrac12$
Complete step by step answer:
To solve this problem, find all the variables in terms of one variable(say a), and then write them in a ratio so that the common variable gets cancelled.
Now, we are given the ratios, so we will first convert them into fractions-
$\dfrac{\mathrm a}{\mathrm b}=2\\\mathrm a=2\mathrm b....\left(1\right)\\\dfrac{\mathrm b}{\mathrm c}=\dfrac13\\\mathrm c=3\mathrm b....\left(2\right)\\\dfrac{\mathrm c}{\mathrm d}=\dfrac23\\\mathrm d=\dfrac32\mathrm c\\\mathrm{Using}\;\mathrm{equation}\left(2\right),\;\\\mathrm d=\dfrac32\times3\mathrm b=\dfrac92\mathrm b....\left(3\right)\\\dfrac{\mathrm d}{\mathrm e}=\dfrac12\\\mathrm e=2\mathrm d\\\mathrm{Using}\;\mathrm{equation}\left(3\right),\;\\\mathrm e=2\times\dfrac92\mathrm b=9\mathrm b....\left(4\right)\\\;$
We have to find a:b:c:d:e. Using equations (1), (2), (3) and (4), we can write that-
$\mathrm a:\mathrm b:\mathrm c:\mathrm d:\mathrm e=2\mathrm b:\mathrm b:3\mathrm b:\frac92\mathrm b:9\mathrm b\\\mathrm{Since}\;\mathrm b\;\mathrm{is}\;\mathrm{common},\;\mathrm{it}\;\mathrm{can}\;\mathrm{be}\;\mathrm{elIminated}.\\\mathrm a:\mathrm b:\mathrm c:\mathrm d:\mathrm e=2:1:3:\frac92:9\\\mathrm{To}\;\mathrm{simplify}\;\mathrm{the}\;\mathrm{answer}\;\mathrm{we}\;\mathrm{can}\;\mathrm{multiply}\;\mathrm{all}\;\mathrm{the}\;\mathrm{terms}\;\mathrm{by}\;2\\\mathrm a:\mathrm b:\mathrm c:\mathrm d:\mathrm e=4:2:6:9:18$
This is the required answer.
Note: Instead of b, any other variable can be taken as reference. A common mistake is that the students don't simplify the final answer and leave it in fractional form, which is incorrect. To simplify the ratio, one can multiply the whole ratio by the LCM of the denominators.
X:Y = 1:2 is the same as $\dfrac{\mathrm X}{\mathrm Y}=\dfrac12$
Complete step by step answer:
To solve this problem, find all the variables in terms of one variable(say a), and then write them in a ratio so that the common variable gets cancelled.
Now, we are given the ratios, so we will first convert them into fractions-
$\dfrac{\mathrm a}{\mathrm b}=2\\\mathrm a=2\mathrm b....\left(1\right)\\\dfrac{\mathrm b}{\mathrm c}=\dfrac13\\\mathrm c=3\mathrm b....\left(2\right)\\\dfrac{\mathrm c}{\mathrm d}=\dfrac23\\\mathrm d=\dfrac32\mathrm c\\\mathrm{Using}\;\mathrm{equation}\left(2\right),\;\\\mathrm d=\dfrac32\times3\mathrm b=\dfrac92\mathrm b....\left(3\right)\\\dfrac{\mathrm d}{\mathrm e}=\dfrac12\\\mathrm e=2\mathrm d\\\mathrm{Using}\;\mathrm{equation}\left(3\right),\;\\\mathrm e=2\times\dfrac92\mathrm b=9\mathrm b....\left(4\right)\\\;$
We have to find a:b:c:d:e. Using equations (1), (2), (3) and (4), we can write that-
$\mathrm a:\mathrm b:\mathrm c:\mathrm d:\mathrm e=2\mathrm b:\mathrm b:3\mathrm b:\frac92\mathrm b:9\mathrm b\\\mathrm{Since}\;\mathrm b\;\mathrm{is}\;\mathrm{common},\;\mathrm{it}\;\mathrm{can}\;\mathrm{be}\;\mathrm{elIminated}.\\\mathrm a:\mathrm b:\mathrm c:\mathrm d:\mathrm e=2:1:3:\frac92:9\\\mathrm{To}\;\mathrm{simplify}\;\mathrm{the}\;\mathrm{answer}\;\mathrm{we}\;\mathrm{can}\;\mathrm{multiply}\;\mathrm{all}\;\mathrm{the}\;\mathrm{terms}\;\mathrm{by}\;2\\\mathrm a:\mathrm b:\mathrm c:\mathrm d:\mathrm e=4:2:6:9:18$
This is the required answer.
Note: Instead of b, any other variable can be taken as reference. A common mistake is that the students don't simplify the final answer and leave it in fractional form, which is incorrect. To simplify the ratio, one can multiply the whole ratio by the LCM of the denominators.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

