![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
If a:b = 2:1, b:c = 1:3, c:d = 2:3 and d:e = 1:2, find a:b:c:d:e.
Answer
498.9k+ views
Hint: This a question of ratio and proportions. The concept of ratio is similar to division. The first number is taken as numerator and second as denominator. For example-
X:Y = 1:2 is the same as $\dfrac{\mathrm X}{\mathrm Y}=\dfrac12$
Complete step by step answer:
To solve this problem, find all the variables in terms of one variable(say a), and then write them in a ratio so that the common variable gets cancelled.
Now, we are given the ratios, so we will first convert them into fractions-
$\dfrac{\mathrm a}{\mathrm b}=2\\\mathrm a=2\mathrm b....\left(1\right)\\\dfrac{\mathrm b}{\mathrm c}=\dfrac13\\\mathrm c=3\mathrm b....\left(2\right)\\\dfrac{\mathrm c}{\mathrm d}=\dfrac23\\\mathrm d=\dfrac32\mathrm c\\\mathrm{Using}\;\mathrm{equation}\left(2\right),\;\\\mathrm d=\dfrac32\times3\mathrm b=\dfrac92\mathrm b....\left(3\right)\\\dfrac{\mathrm d}{\mathrm e}=\dfrac12\\\mathrm e=2\mathrm d\\\mathrm{Using}\;\mathrm{equation}\left(3\right),\;\\\mathrm e=2\times\dfrac92\mathrm b=9\mathrm b....\left(4\right)\\\;$
We have to find a:b:c:d:e. Using equations (1), (2), (3) and (4), we can write that-
$\mathrm a:\mathrm b:\mathrm c:\mathrm d:\mathrm e=2\mathrm b:\mathrm b:3\mathrm b:\frac92\mathrm b:9\mathrm b\\\mathrm{Since}\;\mathrm b\;\mathrm{is}\;\mathrm{common},\;\mathrm{it}\;\mathrm{can}\;\mathrm{be}\;\mathrm{elIminated}.\\\mathrm a:\mathrm b:\mathrm c:\mathrm d:\mathrm e=2:1:3:\frac92:9\\\mathrm{To}\;\mathrm{simplify}\;\mathrm{the}\;\mathrm{answer}\;\mathrm{we}\;\mathrm{can}\;\mathrm{multiply}\;\mathrm{all}\;\mathrm{the}\;\mathrm{terms}\;\mathrm{by}\;2\\\mathrm a:\mathrm b:\mathrm c:\mathrm d:\mathrm e=4:2:6:9:18$
This is the required answer.
Note: Instead of b, any other variable can be taken as reference. A common mistake is that the students don't simplify the final answer and leave it in fractional form, which is incorrect. To simplify the ratio, one can multiply the whole ratio by the LCM of the denominators.
X:Y = 1:2 is the same as $\dfrac{\mathrm X}{\mathrm Y}=\dfrac12$
Complete step by step answer:
To solve this problem, find all the variables in terms of one variable(say a), and then write them in a ratio so that the common variable gets cancelled.
Now, we are given the ratios, so we will first convert them into fractions-
$\dfrac{\mathrm a}{\mathrm b}=2\\\mathrm a=2\mathrm b....\left(1\right)\\\dfrac{\mathrm b}{\mathrm c}=\dfrac13\\\mathrm c=3\mathrm b....\left(2\right)\\\dfrac{\mathrm c}{\mathrm d}=\dfrac23\\\mathrm d=\dfrac32\mathrm c\\\mathrm{Using}\;\mathrm{equation}\left(2\right),\;\\\mathrm d=\dfrac32\times3\mathrm b=\dfrac92\mathrm b....\left(3\right)\\\dfrac{\mathrm d}{\mathrm e}=\dfrac12\\\mathrm e=2\mathrm d\\\mathrm{Using}\;\mathrm{equation}\left(3\right),\;\\\mathrm e=2\times\dfrac92\mathrm b=9\mathrm b....\left(4\right)\\\;$
We have to find a:b:c:d:e. Using equations (1), (2), (3) and (4), we can write that-
$\mathrm a:\mathrm b:\mathrm c:\mathrm d:\mathrm e=2\mathrm b:\mathrm b:3\mathrm b:\frac92\mathrm b:9\mathrm b\\\mathrm{Since}\;\mathrm b\;\mathrm{is}\;\mathrm{common},\;\mathrm{it}\;\mathrm{can}\;\mathrm{be}\;\mathrm{elIminated}.\\\mathrm a:\mathrm b:\mathrm c:\mathrm d:\mathrm e=2:1:3:\frac92:9\\\mathrm{To}\;\mathrm{simplify}\;\mathrm{the}\;\mathrm{answer}\;\mathrm{we}\;\mathrm{can}\;\mathrm{multiply}\;\mathrm{all}\;\mathrm{the}\;\mathrm{terms}\;\mathrm{by}\;2\\\mathrm a:\mathrm b:\mathrm c:\mathrm d:\mathrm e=4:2:6:9:18$
This is the required answer.
Note: Instead of b, any other variable can be taken as reference. A common mistake is that the students don't simplify the final answer and leave it in fractional form, which is incorrect. To simplify the ratio, one can multiply the whole ratio by the LCM of the denominators.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The area of a 6m wide road outside a garden in all class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the electric flux through a cube of side 1 class 10 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The radius and height of a cylinder are in the ratio class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Why is there a time difference of about 5 hours between class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Change the following sentences into negative and interrogative class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What constitutes the central nervous system How are class 10 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write a letter to the principal requesting him to grant class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)