Answer
Verified
468.6k+ views
Hint: First of all, find an equation between the numbers \[a,b,c\] which is in H.P. Then find the geometric mean and harmonic mean of \[a\] and \[c\]. Use A.M > G.M > H.P to prove the given statement. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given that \[a,b,c\] are in H.P. and they are distinct and positive.
So, we have \[\dfrac{1}{a} + \dfrac{1}{c} = \dfrac{2}{b} \Rightarrow b = \dfrac{{2ac}}{{a + c}}\]
Consider geometric mean of \[a\] and \[c\] = \[\sqrt {ac} \]
Harmonic mean of \[a\] and \[c\] = \[\dfrac{{2ac}}{{a + c}}\]
We know that G.M > H.P
So, we have
\[
\Rightarrow \sqrt {ac} > \dfrac{{2ac}}{{a + c}} \\
\Rightarrow \sqrt {ac} > b\,{\text{ }}\left[ {\because \dfrac{{2ac}}{{a + c}} = b} \right] \\
\]
Raising its power to \[n\] on both sides, we get
\[
\Rightarrow {\left( {\sqrt {ac} } \right)^n} > {b^n} \\
\Rightarrow {\left( {ac} \right)^{\dfrac{n}{2}}} > {b^n}....................................\left( 1 \right) \\
\]
Let \[{a^n}\] and \[{c^n}\] be two numbers. Since \[a,c\] are positive and distinct, \[{a^n}\] and \[{c^n}\] are also positive.
We know that for two numbers A.M > G.M > H.M
Now, Arithmetic mean (A.M) of \[{a^n}\] and \[{c^n}\] = \[\dfrac{{{a^n} + {c^n}}}{2}\]
Geometric mean (G.M) of \[{a^n}\] and \[{c^n}\] = \[\sqrt {{a^n}{c^n}} = {\left( {ac} \right)^{\dfrac{n}{2}}}\]
Harmonic mean of \[{a^n}\] and \[{c^n}\] = \[\dfrac{{2{a^n}{c^n}}}{{{a^n} + {c^n}}} = \dfrac{{2{{\left( {ac} \right)}^{\dfrac{n}{2}}}}}{{{a^n} + {c^n}}}\]
Since A.M > G.M
\[
\Rightarrow \dfrac{{{a^n} + {c^n}}}{2} > {\left( {ac} \right)^{\dfrac{n}{2}}} \\
\Rightarrow {a^n} + {c^n} > 2{\left( {ac} \right)^{\dfrac{n}{2}}} \\
\therefore {a^n} + {c^n} > 2{b^n}{\text{ }}\left[ {\because {\text{equation }}\left( 1 \right)} \right] \\
\]
Hence proved that \[{a^n} + {c^n} > 2{b^n}\]
Note: Three numbers \[x,y,z\] are said to be in Harmonic progression if it satisfies the condition \[\dfrac{1}{x} + \dfrac{1}{z} = \dfrac{2}{y}\]. Arithmetic mean, geometric mean and harmonic mean of two numbers \[x\] and \[y\] is given by \[\dfrac{{x + y}}{2},\sqrt {xy} ,\dfrac{{2xy}}{{x + y}}\] respectively.
Complete step-by-step answer:
Given that \[a,b,c\] are in H.P. and they are distinct and positive.
So, we have \[\dfrac{1}{a} + \dfrac{1}{c} = \dfrac{2}{b} \Rightarrow b = \dfrac{{2ac}}{{a + c}}\]
Consider geometric mean of \[a\] and \[c\] = \[\sqrt {ac} \]
Harmonic mean of \[a\] and \[c\] = \[\dfrac{{2ac}}{{a + c}}\]
We know that G.M > H.P
So, we have
\[
\Rightarrow \sqrt {ac} > \dfrac{{2ac}}{{a + c}} \\
\Rightarrow \sqrt {ac} > b\,{\text{ }}\left[ {\because \dfrac{{2ac}}{{a + c}} = b} \right] \\
\]
Raising its power to \[n\] on both sides, we get
\[
\Rightarrow {\left( {\sqrt {ac} } \right)^n} > {b^n} \\
\Rightarrow {\left( {ac} \right)^{\dfrac{n}{2}}} > {b^n}....................................\left( 1 \right) \\
\]
Let \[{a^n}\] and \[{c^n}\] be two numbers. Since \[a,c\] are positive and distinct, \[{a^n}\] and \[{c^n}\] are also positive.
We know that for two numbers A.M > G.M > H.M
Now, Arithmetic mean (A.M) of \[{a^n}\] and \[{c^n}\] = \[\dfrac{{{a^n} + {c^n}}}{2}\]
Geometric mean (G.M) of \[{a^n}\] and \[{c^n}\] = \[\sqrt {{a^n}{c^n}} = {\left( {ac} \right)^{\dfrac{n}{2}}}\]
Harmonic mean of \[{a^n}\] and \[{c^n}\] = \[\dfrac{{2{a^n}{c^n}}}{{{a^n} + {c^n}}} = \dfrac{{2{{\left( {ac} \right)}^{\dfrac{n}{2}}}}}{{{a^n} + {c^n}}}\]
Since A.M > G.M
\[
\Rightarrow \dfrac{{{a^n} + {c^n}}}{2} > {\left( {ac} \right)^{\dfrac{n}{2}}} \\
\Rightarrow {a^n} + {c^n} > 2{\left( {ac} \right)^{\dfrac{n}{2}}} \\
\therefore {a^n} + {c^n} > 2{b^n}{\text{ }}\left[ {\because {\text{equation }}\left( 1 \right)} \right] \\
\]
Hence proved that \[{a^n} + {c^n} > 2{b^n}\]
Note: Three numbers \[x,y,z\] are said to be in Harmonic progression if it satisfies the condition \[\dfrac{1}{x} + \dfrac{1}{z} = \dfrac{2}{y}\]. Arithmetic mean, geometric mean and harmonic mean of two numbers \[x\] and \[y\] is given by \[\dfrac{{x + y}}{2},\sqrt {xy} ,\dfrac{{2xy}}{{x + y}}\] respectively.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers