Answer
Verified
500.7k+ views
Hint: Use property of inverse of A and determinant of adjoint of A. Also two matrices are equal to each other then, the order of both the matrices will be equal.
Given, ${\text{A}}\left( {{\text{adjA}}} \right) = 5{\text{I}}$ where order of identity matrix is 3.
Clearly, the order of matrix A and that of identity matrix are equal.
So, the order of matrix A is also 3.
As we know that inverse of any matrix A is given by ${{\text{A}}^{ - 1}} = \dfrac{1}{{|A|}}\left( {{\text{adjA}}} \right)$ where |A| is the determinant of matrix A and adjA is the adjoint matrix of matrix A.
$\therefore {\text{ A}}\left[ {{{\text{A}}^{ - 1}}} \right] = {\text{A}}\left[ {\dfrac{1}{{|A|}}\left( {{\text{adjA}}} \right)} \right] = \dfrac{{{\text{A}}\left( {{\text{adjA}}} \right)}}{{|A|}} = \dfrac{{5{\text{I}}}}{{|A|}}$
Also, we know that ${\text{ A}}\left[ {{{\text{A}}^{ - 1}}} \right] = {\text{I}}$ where ${\text{I}}$ is the identity matrix order 3
Therefore, $
\Rightarrow {\text{I}} = \dfrac{{5{\text{I}}}}{{|A|}} \\
\Rightarrow |{\text{A}}|I = 5I \\
$
On comparing the above equation, we get
Determinant of the matrix A, $|{\text{A}}| = 5$
Using the identity, \[|{\text{adjA}}| = {\left[ {|A|} \right]^{n - 1}}\] where n is the order of the matrix of A
Put $|{\text{A}}| = 5$ and ${\text{n}} = 3$ in the above identity, we have
\[ \Rightarrow |{\text{adjA}}| = {\left[ 5 \right]^{3 - 1}} = {5^2} = 25\]
Therefore, the determinant of matrix adjA is 25.
Option B is correct.
Note- Here, the inverse matrix only exists for non-singular matrices (i.e., determinant of that matrix whose inverse is required should always be non-zero). Also if in an equation two matrices are equal to each other then, order of both the matrices will be equal.
Given, ${\text{A}}\left( {{\text{adjA}}} \right) = 5{\text{I}}$ where order of identity matrix is 3.
Clearly, the order of matrix A and that of identity matrix are equal.
So, the order of matrix A is also 3.
As we know that inverse of any matrix A is given by ${{\text{A}}^{ - 1}} = \dfrac{1}{{|A|}}\left( {{\text{adjA}}} \right)$ where |A| is the determinant of matrix A and adjA is the adjoint matrix of matrix A.
$\therefore {\text{ A}}\left[ {{{\text{A}}^{ - 1}}} \right] = {\text{A}}\left[ {\dfrac{1}{{|A|}}\left( {{\text{adjA}}} \right)} \right] = \dfrac{{{\text{A}}\left( {{\text{adjA}}} \right)}}{{|A|}} = \dfrac{{5{\text{I}}}}{{|A|}}$
Also, we know that ${\text{ A}}\left[ {{{\text{A}}^{ - 1}}} \right] = {\text{I}}$ where ${\text{I}}$ is the identity matrix order 3
Therefore, $
\Rightarrow {\text{I}} = \dfrac{{5{\text{I}}}}{{|A|}} \\
\Rightarrow |{\text{A}}|I = 5I \\
$
On comparing the above equation, we get
Determinant of the matrix A, $|{\text{A}}| = 5$
Using the identity, \[|{\text{adjA}}| = {\left[ {|A|} \right]^{n - 1}}\] where n is the order of the matrix of A
Put $|{\text{A}}| = 5$ and ${\text{n}} = 3$ in the above identity, we have
\[ \Rightarrow |{\text{adjA}}| = {\left[ 5 \right]^{3 - 1}} = {5^2} = 25\]
Therefore, the determinant of matrix adjA is 25.
Option B is correct.
Note- Here, the inverse matrix only exists for non-singular matrices (i.e., determinant of that matrix whose inverse is required should always be non-zero). Also if in an equation two matrices are equal to each other then, order of both the matrices will be equal.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE