Answer
Verified
469.5k+ views
Hint: We need to simplify such equation using trigonometric functions
Sum of the trigonometric functions can be formulated as:
\[Cos(A + B) + \operatorname{Cos} (A - B) = 2\operatorname{Cos} A\operatorname{Cos} B\]
We know that the value of a \[\operatorname{Sin} \theta + B\operatorname{Cos} \theta \] lies between: \[ - \sqrt {{a^2} + {b^2}} \leqslant a\operatorname{Sin} \theta + b\cos \theta \leqslant \sqrt {{a^2} + {b^2}} \].
Complete step-by- step solution:
We have,
\[ \Rightarrow a\operatorname{Sin} \theta + b\cos (x + \theta ) + b\cos (x - \theta ) - d.............eqn(1)\]
Taking out b common from\[eqn(1)\], we get
\[ \Rightarrow a\operatorname{Sin} \theta + b\left[ {\cos (x + \theta ) + \cos (x - \theta )} \right] - d...............eqn(2)\]
We know, \[Cos(x - \theta ) + \operatorname{Cos} (x - \theta ) = 2Cosx\,Cos\theta ...........eqn(3)\]
Using the value of \[eqn(3)\]in\[eqn(2)\], we get
\[a\sin x + b\left[ {2Cosx\,\operatorname{Cos} \theta } \right] = d\]
\[ \Rightarrow a\sin x + b\left[ {2bCosx\,\operatorname{Cos} \theta } \right] = d........eqn(4)\]
As \[a\sin \theta + b\operatorname{Cos} \theta \] lies between \[ - \sqrt {{a^2} + {b^2}} \leqslant a\operatorname{Sin} \theta + b\operatorname{Cos} \theta \leqslant \sqrt {{a^2} + {b^2}} \]
\[ \Rightarrow \left| {a\sin \theta + b\cos \theta } \right| \leqslant \sqrt {{a^2} + {b^2}} ........eqn(5)\]
Compare\[a\sin \theta + b\cos \theta \] with \[a\sin x + (2b\operatorname{Cos} \theta )\operatorname{Cos} x\]
We get, \[a = a\] and \[b = 2b\operatorname{Cos} \theta ........eqn(6)\]
Using the value of \[eqn\] (6) and (4) in (5), we have \[a\sin \theta + b\cos \theta = d,\]\[a = a\]and \[b = 2b\operatorname{Cos} \theta \]
\[ \Rightarrow \left| d \right| \leqslant \sqrt {{a^2} + {{(2b\cos \theta )}^2}} \]
\[ \Rightarrow \left| d \right| \leqslant \sqrt {{a^2} + 4{b^2}Co{s^2}\theta } \]
On squaring both sides
\[ \Rightarrow {d^2} \leqslant {a^2} + 4{b^2}Co{s^2}\theta \]
\[ \Rightarrow {d^2} - {a^2} \leqslant 4{b^2}Co{s^2}\theta \]
\[ \Rightarrow \dfrac{{{d^2} - {a^2}}}{{4{b^2}}} \leqslant Co{s^2}\theta \]
Taking under root on both sides
.\[\left| {\operatorname{Cos} \theta } \right| \geqslant \dfrac{{\sqrt {{d^2} - {a^2}} }}{{\sqrt {4{b^2}} }}\]
\[\begin{gathered}
\\
\left| {\operatorname{Cos} \theta } \right| \geqslant \dfrac{{\sqrt {{d^2} - {a^2}} }}{{2\left| b \right|}} \\
\end{gathered} \]
Hence \[\left| {\operatorname{Cos} \theta } \right| = \dfrac{1}{{2\left| b \right|}}\sqrt {{d^2} - {a^2}} \]
Note: Recall that in its basic form \[\,f(x) = \,|x|,\,\]
The absolute value function is one of our tool kit functions. The absolute value function is commonly thought of as providing the distance the number is from zero on a number line. Algebraically, for whatever the input value is, the output is the value without regard to sign. Knowing this, we can use absolute value functions to solve some kinds of real-world problems. Modulus operation on function converts negative function values to positive function values with equal magnitude. As such, we draw a graph of the modulus function by taking a mirror image of the corresponding core graph in x-axis.
We need under that if x lies between \[ - a < x < a\] then \[\left| a \right| \leqslant x.\]
Sum of the trigonometric functions can be formulated as:
\[Cos(A + B) + \operatorname{Cos} (A - B) = 2\operatorname{Cos} A\operatorname{Cos} B\]
We know that the value of a \[\operatorname{Sin} \theta + B\operatorname{Cos} \theta \] lies between: \[ - \sqrt {{a^2} + {b^2}} \leqslant a\operatorname{Sin} \theta + b\cos \theta \leqslant \sqrt {{a^2} + {b^2}} \].
Complete step-by- step solution:
We have,
\[ \Rightarrow a\operatorname{Sin} \theta + b\cos (x + \theta ) + b\cos (x - \theta ) - d.............eqn(1)\]
Taking out b common from\[eqn(1)\], we get
\[ \Rightarrow a\operatorname{Sin} \theta + b\left[ {\cos (x + \theta ) + \cos (x - \theta )} \right] - d...............eqn(2)\]
We know, \[Cos(x - \theta ) + \operatorname{Cos} (x - \theta ) = 2Cosx\,Cos\theta ...........eqn(3)\]
Using the value of \[eqn(3)\]in\[eqn(2)\], we get
\[a\sin x + b\left[ {2Cosx\,\operatorname{Cos} \theta } \right] = d\]
\[ \Rightarrow a\sin x + b\left[ {2bCosx\,\operatorname{Cos} \theta } \right] = d........eqn(4)\]
As \[a\sin \theta + b\operatorname{Cos} \theta \] lies between \[ - \sqrt {{a^2} + {b^2}} \leqslant a\operatorname{Sin} \theta + b\operatorname{Cos} \theta \leqslant \sqrt {{a^2} + {b^2}} \]
\[ \Rightarrow \left| {a\sin \theta + b\cos \theta } \right| \leqslant \sqrt {{a^2} + {b^2}} ........eqn(5)\]
Compare\[a\sin \theta + b\cos \theta \] with \[a\sin x + (2b\operatorname{Cos} \theta )\operatorname{Cos} x\]
We get, \[a = a\] and \[b = 2b\operatorname{Cos} \theta ........eqn(6)\]
Using the value of \[eqn\] (6) and (4) in (5), we have \[a\sin \theta + b\cos \theta = d,\]\[a = a\]and \[b = 2b\operatorname{Cos} \theta \]
\[ \Rightarrow \left| d \right| \leqslant \sqrt {{a^2} + {{(2b\cos \theta )}^2}} \]
\[ \Rightarrow \left| d \right| \leqslant \sqrt {{a^2} + 4{b^2}Co{s^2}\theta } \]
On squaring both sides
\[ \Rightarrow {d^2} \leqslant {a^2} + 4{b^2}Co{s^2}\theta \]
\[ \Rightarrow {d^2} - {a^2} \leqslant 4{b^2}Co{s^2}\theta \]
\[ \Rightarrow \dfrac{{{d^2} - {a^2}}}{{4{b^2}}} \leqslant Co{s^2}\theta \]
Taking under root on both sides
.\[\left| {\operatorname{Cos} \theta } \right| \geqslant \dfrac{{\sqrt {{d^2} - {a^2}} }}{{\sqrt {4{b^2}} }}\]
\[\begin{gathered}
\\
\left| {\operatorname{Cos} \theta } \right| \geqslant \dfrac{{\sqrt {{d^2} - {a^2}} }}{{2\left| b \right|}} \\
\end{gathered} \]
Hence \[\left| {\operatorname{Cos} \theta } \right| = \dfrac{1}{{2\left| b \right|}}\sqrt {{d^2} - {a^2}} \]
Note: Recall that in its basic form \[\,f(x) = \,|x|,\,\]
The absolute value function is one of our tool kit functions. The absolute value function is commonly thought of as providing the distance the number is from zero on a number line. Algebraically, for whatever the input value is, the output is the value without regard to sign. Knowing this, we can use absolute value functions to solve some kinds of real-world problems. Modulus operation on function converts negative function values to positive function values with equal magnitude. As such, we draw a graph of the modulus function by taking a mirror image of the corresponding core graph in x-axis.
We need under that if x lies between \[ - a < x < a\] then \[\left| a \right| \leqslant x.\]
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE