If \[A\subset B,n\left( A \right)=5\] and \[n\left( B \right)=7\], then \[n\left( A\cup B \right)=\]_ _ _ _ _ _ _ _ _.
(a) 5
(b) 7
(c) 2
(d) 12
Answer
Verified
507.9k+ views
Hint: Use the formula for union of two sets that is \[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)-n\left( A\cap B \right)\]. Now, since \[A\subset B\], therefore put \[n\left( A\cap B \right)=n\left( A \right)\], then use the given information that is \[n\left( A \right)=5\] and \[n\left( B \right)=7\].
Here, we are given two sets A and B such that \[A\subset B\], \[n\left( A \right)=5\] and \[n\left( B \right)=7\]. We have to find the value of \[n\left( A\cup B \right)\].
Before proceeding with the question, we must know some of the terminologies related to sets.
First of all, a ‘set’ is a collection of well-defined and distinct objects. The most basic property of a set is that it has elements. The number of elements of a set, say A is shown by \[n\left( A \right)\].
Here, in the question we have \[n\left( A \right)=5\] and \[n\left( B \right)=7\], that means the number of elements in set A is 5, while the number of elements in set B is 7.
Now, a ‘subset’ is a set which is contained in another set. We can also put it as, if we have a set P which is a subset of another set Q, then P is contained in Q as all the elements of set P are elements of Q. This relationship is shown by \[P\subset Q\].
We can show it diagrammatically as,
Here, \[P\subset Q\], that means P is contained in Q as P is a subset of Q.
In question, we are given that \[A\subset B\], that means that A is a subset of B or A is contained in B. We can show them as
Now, union of two sets say P and Q is the set of elements which are in P, in Q or both P and Q. For example, if P = {1, 3, 5, 7} and Q = {1, 2, 4, 6, 7}, then union of P and Q which is shown as \[P\cup Q=\left\{ 1,2,3,4,5,6,7 \right\}\]
Diagrammatically, the shaded portion is \[P\cup Q\] which is as follows
The formula for \[n\left( P\cup Q \right)=n\left( P \right)+n\left( Q \right)-n\left( P\cap Q \right)\].
Here, \[P\cap Q\] is the area common to both P and Q.
Now, in the given question, we have to find \[n\left( A\cup B \right)\], that is, the number of elements in A union B.
We can show \[A\cup B\] by a shaded portion which is as follows.
Here, \[A\subset B\] and \[n\left( A \right)=5\] and \[n\left( B \right)=7\].
Here, we can see that the portion common to the set A and B that is \[\left( A\cap B \right)\] is nothing but set A. Therefore, here we have \[n\left( A\cap B \right)=n\left( A \right)=5\].
As we know that \[n\left( P\cup Q \right)=n\left( P \right)+n\left( Q \right)-n\left( P\cap Q \right)\], therefore to get \[n\left( A\cup B \right)\], we will put A and B in place of P and Q respectively, we will get
\[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)-n\left( A\cap B \right)\]
Since, we have found that \[n\left( A\cap B \right)=n\left( A \right)=5\].
Therefore we get, \[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)-n\left( A \right)\]
By putting the values of n (A) and n (B), we get,
\[n\left( A\cup B \right)=5+7-5\]
\[n\left( A\cup B \right)=7\]
Therefore, we get \[n\left( A\cup B \right)=7\]
Hence, option (b) is correct.
Note: Students must note that whenever \[A\subset B\], that is A is subset of B, then \[n\left( A\cup B \right)\], that is the number of elements in A union B is equal to number of elements in set B that is, \[n\left( A\cup B \right)=n\left( B \right)\] when \[A\subset B\]. Also, some students make this mistake of writing \[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)\] which is wrong. They must remember to subtract \[n\left( A\cap B \right)\] as well. Hence, \[n\left( A\cap B \right)=n\left( A \right)+n\left( B \right)-n\left( A\cap B \right)\].
Here, we are given two sets A and B such that \[A\subset B\], \[n\left( A \right)=5\] and \[n\left( B \right)=7\]. We have to find the value of \[n\left( A\cup B \right)\].
Before proceeding with the question, we must know some of the terminologies related to sets.
First of all, a ‘set’ is a collection of well-defined and distinct objects. The most basic property of a set is that it has elements. The number of elements of a set, say A is shown by \[n\left( A \right)\].
Here, in the question we have \[n\left( A \right)=5\] and \[n\left( B \right)=7\], that means the number of elements in set A is 5, while the number of elements in set B is 7.
Now, a ‘subset’ is a set which is contained in another set. We can also put it as, if we have a set P which is a subset of another set Q, then P is contained in Q as all the elements of set P are elements of Q. This relationship is shown by \[P\subset Q\].
We can show it diagrammatically as,
Here, \[P\subset Q\], that means P is contained in Q as P is a subset of Q.
In question, we are given that \[A\subset B\], that means that A is a subset of B or A is contained in B. We can show them as
Now, union of two sets say P and Q is the set of elements which are in P, in Q or both P and Q. For example, if P = {1, 3, 5, 7} and Q = {1, 2, 4, 6, 7}, then union of P and Q which is shown as \[P\cup Q=\left\{ 1,2,3,4,5,6,7 \right\}\]
Diagrammatically, the shaded portion is \[P\cup Q\] which is as follows
The formula for \[n\left( P\cup Q \right)=n\left( P \right)+n\left( Q \right)-n\left( P\cap Q \right)\].
Here, \[P\cap Q\] is the area common to both P and Q.
Now, in the given question, we have to find \[n\left( A\cup B \right)\], that is, the number of elements in A union B.
We can show \[A\cup B\] by a shaded portion which is as follows.
Here, \[A\subset B\] and \[n\left( A \right)=5\] and \[n\left( B \right)=7\].
Here, we can see that the portion common to the set A and B that is \[\left( A\cap B \right)\] is nothing but set A. Therefore, here we have \[n\left( A\cap B \right)=n\left( A \right)=5\].
As we know that \[n\left( P\cup Q \right)=n\left( P \right)+n\left( Q \right)-n\left( P\cap Q \right)\], therefore to get \[n\left( A\cup B \right)\], we will put A and B in place of P and Q respectively, we will get
\[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)-n\left( A\cap B \right)\]
Since, we have found that \[n\left( A\cap B \right)=n\left( A \right)=5\].
Therefore we get, \[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)-n\left( A \right)\]
By putting the values of n (A) and n (B), we get,
\[n\left( A\cup B \right)=5+7-5\]
\[n\left( A\cup B \right)=7\]
Therefore, we get \[n\left( A\cup B \right)=7\]
Hence, option (b) is correct.
Note: Students must note that whenever \[A\subset B\], that is A is subset of B, then \[n\left( A\cup B \right)\], that is the number of elements in A union B is equal to number of elements in set B that is, \[n\left( A\cup B \right)=n\left( B \right)\] when \[A\subset B\]. Also, some students make this mistake of writing \[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)\] which is wrong. They must remember to subtract \[n\left( A\cap B \right)\] as well. Hence, \[n\left( A\cap B \right)=n\left( A \right)+n\left( B \right)-n\left( A\cap B \right)\].
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
How do you convert from joules to electron volts class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE
On what factors does the internal resistance of a cell class 12 physics CBSE
A 24 volt battery of internal resistance 4 ohm is connected class 12 physics CBSE