
If C is a skew-symmetric matrix of order n and X in \[n\times 1\] column matrix, then \[{{X}^{T}}CX\] is
(A) singular
(B) non-singular
(C) invertible
(D) non-invertible
Answer
572.7k+ views
Hint: First of all, assume that \[C=\left[ \begin{align}
& \begin{matrix}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0 \\
\end{matrix} \\
\end{align} \right]\] and \[X=\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]\] . Now, get the transpose of the matrix X, \[{{X}^{T}}=\left[ \begin{matrix}
p & q & r \\
\end{matrix} \right]\] . Now, multiply the matrix C and X, and get the value of \[CX\] . We know the property that the transpose of a matrix is the interchange of its rows by columns. Use this property and get the transpose of the matrix X, \[{{X}^{T}}\] . Now, multiply the matrix \[{{X}^{T}}\] and \[CX\] , and get the result. We also know the property that the determinant value of a non-invertible matrix is equal to zero. At last, conclude the answer.
Complete step-by-step solution:
According to the question, it is given that we have a skew-symmetric matrix C of order n and a matrix X of order \[n\times 1\] column matrix.
We know that the diagonal elements of a skew-symmetric matrix are zero and also the transpose of the skew-symmetric its negative.
First of all, let us assume that,
A skew-symmetric matrix C of order n = \[C=\left[ \begin{align}
& \begin{matrix}
\,\,\,0 & \,\,a & \,b \\
\end{matrix} \\
& \begin{matrix}
-a & \,0 & \,c \\
\end{matrix} \\
& \begin{matrix}
-b & -c & 0 \\
\end{matrix} \\
\end{align} \right]\] ……………………………………….(1)
The matrix X of order \[n\times 1\] column matrix = \[X=\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]\] ……………………………………….(2)
We know the property that the transpose of a matrix is simply the interchange of the rows and columns of the matrix.
Now, the transpose of the matrix X = \[{{X}^{T}}=\left[ \begin{matrix}
p & q & r \\
\end{matrix} \right]\] ………………………………………..(3)
From equation (1) and equation (2), we have the matrix C and X.
Now, on multiplying the matrix C and X, we get
\[CX=\left[ \begin{align}
& \begin{matrix}
\,\,\,0 & \,\,a & \,b \\
\end{matrix} \\
& \begin{matrix}
-a & \,0 & \,\,c \\
\end{matrix} \\
& \begin{matrix}
-b & -c & 0 \\
\end{matrix} \\
\end{align} \right]\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]=\left[ \begin{matrix}
0\times p+a\times q+b\times r \\
\left( -a \right)\times p+0\times q+c\times r \\
\left( -b \right)\times p+\left( -c \right)\times q+0\times r \\
\end{matrix} \right]=\left[ \begin{matrix}
aq+br \\
-ap+cr \\
-bp-cq \\
\end{matrix} \right]\] ……………………………………….(4)
From equation (3) and equation (4), we have the matrix \[{{X}^{T}}\] and \[CX\] .
Now, on multiplying the matrix \[{{X}^{T}}\] and \[CX\] , we get
\[\begin{align}
& \Rightarrow {{X}^{T}}CX=\left[ \begin{matrix}
p & q & r \\
\end{matrix} \right]\left[ \begin{matrix}
aq+br \\
-ap+cr \\
-bp-cq \\
\end{matrix} \right] \\
& \Rightarrow {{X}^{T}}CX=\left[ paq+pbr-qap+cqr-rbp-rcq \right] \\
& \Rightarrow {{X}^{T}}CX=\left[ paq+pbr-paq+cqr-pbr-cqr \right] \\
\end{align}\]
\[\Rightarrow {{X}^{T}}CX=\left[ 0 \right]\] ……………………………………..(5)
From equation (5), we have the value of \[{{X}^{T}}CX=\left[ 0 \right]\] .
Now, we can see that the determinant value of \[{{X}^{T}}CX\] is zero and we know that the determinant value of a singular matrix is zero ……………………………. (6)
So, the matrix \[{{X}^{T}}CX\] is singular ………………………………………(7)
We know the property that the determinant value of a non-invertible matrix is equal to zero.
From equation (6), we have the determinant value of matrix \[{{X}^{T}}CX\] .
So, the matrix \[{{X}^{T}}CX\] is non-invertible …………………………………………….(8)
Now, from equation (7) and equation (8), we can say that the matrix \[{{X}^{T}}CX\] is singular and also non-invertible.
Therefore, the correct option is (A) and (D).
Note: In this question, one might assume matrix C as \[\left[ \begin{align}
& \begin{matrix}
d & a & b \\
\end{matrix} \\
& \begin{matrix}
-a & e & c \\
\end{matrix} \\
& \begin{matrix}
-b & -c & f \\
\end{matrix} \\
\end{align} \right]\] . If we do so then our calculation will get complex. Since the matrix C is skew-symmetric iso, its diagonal matrix is zero, and the transpose is negative of the skew-symmetric matrix.
& \begin{matrix}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0 \\
\end{matrix} \\
\end{align} \right]\] and \[X=\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]\] . Now, get the transpose of the matrix X, \[{{X}^{T}}=\left[ \begin{matrix}
p & q & r \\
\end{matrix} \right]\] . Now, multiply the matrix C and X, and get the value of \[CX\] . We know the property that the transpose of a matrix is the interchange of its rows by columns. Use this property and get the transpose of the matrix X, \[{{X}^{T}}\] . Now, multiply the matrix \[{{X}^{T}}\] and \[CX\] , and get the result. We also know the property that the determinant value of a non-invertible matrix is equal to zero. At last, conclude the answer.
Complete step-by-step solution:
According to the question, it is given that we have a skew-symmetric matrix C of order n and a matrix X of order \[n\times 1\] column matrix.
We know that the diagonal elements of a skew-symmetric matrix are zero and also the transpose of the skew-symmetric its negative.
First of all, let us assume that,
A skew-symmetric matrix C of order n = \[C=\left[ \begin{align}
& \begin{matrix}
\,\,\,0 & \,\,a & \,b \\
\end{matrix} \\
& \begin{matrix}
-a & \,0 & \,c \\
\end{matrix} \\
& \begin{matrix}
-b & -c & 0 \\
\end{matrix} \\
\end{align} \right]\] ……………………………………….(1)
The matrix X of order \[n\times 1\] column matrix = \[X=\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]\] ……………………………………….(2)
We know the property that the transpose of a matrix is simply the interchange of the rows and columns of the matrix.
Now, the transpose of the matrix X = \[{{X}^{T}}=\left[ \begin{matrix}
p & q & r \\
\end{matrix} \right]\] ………………………………………..(3)
From equation (1) and equation (2), we have the matrix C and X.
Now, on multiplying the matrix C and X, we get
\[CX=\left[ \begin{align}
& \begin{matrix}
\,\,\,0 & \,\,a & \,b \\
\end{matrix} \\
& \begin{matrix}
-a & \,0 & \,\,c \\
\end{matrix} \\
& \begin{matrix}
-b & -c & 0 \\
\end{matrix} \\
\end{align} \right]\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]=\left[ \begin{matrix}
0\times p+a\times q+b\times r \\
\left( -a \right)\times p+0\times q+c\times r \\
\left( -b \right)\times p+\left( -c \right)\times q+0\times r \\
\end{matrix} \right]=\left[ \begin{matrix}
aq+br \\
-ap+cr \\
-bp-cq \\
\end{matrix} \right]\] ……………………………………….(4)
From equation (3) and equation (4), we have the matrix \[{{X}^{T}}\] and \[CX\] .
Now, on multiplying the matrix \[{{X}^{T}}\] and \[CX\] , we get
\[\begin{align}
& \Rightarrow {{X}^{T}}CX=\left[ \begin{matrix}
p & q & r \\
\end{matrix} \right]\left[ \begin{matrix}
aq+br \\
-ap+cr \\
-bp-cq \\
\end{matrix} \right] \\
& \Rightarrow {{X}^{T}}CX=\left[ paq+pbr-qap+cqr-rbp-rcq \right] \\
& \Rightarrow {{X}^{T}}CX=\left[ paq+pbr-paq+cqr-pbr-cqr \right] \\
\end{align}\]
\[\Rightarrow {{X}^{T}}CX=\left[ 0 \right]\] ……………………………………..(5)
From equation (5), we have the value of \[{{X}^{T}}CX=\left[ 0 \right]\] .
Now, we can see that the determinant value of \[{{X}^{T}}CX\] is zero and we know that the determinant value of a singular matrix is zero ……………………………. (6)
So, the matrix \[{{X}^{T}}CX\] is singular ………………………………………(7)
We know the property that the determinant value of a non-invertible matrix is equal to zero.
From equation (6), we have the determinant value of matrix \[{{X}^{T}}CX\] .
So, the matrix \[{{X}^{T}}CX\] is non-invertible …………………………………………….(8)
Now, from equation (7) and equation (8), we can say that the matrix \[{{X}^{T}}CX\] is singular and also non-invertible.
Therefore, the correct option is (A) and (D).
Note: In this question, one might assume matrix C as \[\left[ \begin{align}
& \begin{matrix}
d & a & b \\
\end{matrix} \\
& \begin{matrix}
-a & e & c \\
\end{matrix} \\
& \begin{matrix}
-b & -c & f \\
\end{matrix} \\
\end{align} \right]\] . If we do so then our calculation will get complex. Since the matrix C is skew-symmetric iso, its diagonal matrix is zero, and the transpose is negative of the skew-symmetric matrix.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

December 10th of 1948 is an important day in the history class 12 sst CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

