If ${\cos ^{ - 1}}x = \alpha ,(0 < x < 1)$ and ${\sin ^{ - 1}}(2x\sqrt {1 - {x^2}} ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right) = \dfrac{{2\pi }}{3},$ then ${\tan ^{ - 1}}(2x)$ is equal to
\[
A.{\text{ }}\dfrac{\pi }{6} \\
B.{\text{ }}\dfrac{\pi }{4} \\
C.{\text{ }}\dfrac{\pi }{3} \\
D.{\text{ }}\dfrac{\pi }{2} \\
\]
Answer
Verified
505.5k+ views
Hint- To evaluate the value of ${\tan ^{ - 1}}(2x)$ we will first find the value of $x$ with the help of given equation, for it we will use some trigonometric formulas such as $\sin 2a = 2\sin a\cos a{\text{ and }}\cos 2a = 2{\cos ^2}a - 1$
Complete step-by-step answer:
Given that, ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)................(1)$
Therefore $x = \cos \alpha $
And given equation is ${\sin ^{ - 1}}(2x\sqrt {1 - {x^2}} ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right) = \dfrac{{2\pi }}{3}$
Now substitute the value of $x = \cos \alpha $ in the above equation, we get
$ \Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3}$
As we know that
$
1 - {\cos ^2}A = {\sin ^2}A \\
2\sin A\cos A = \sin 2A \\
2{\cos ^2}A - 1 = \cos 2A \\
$
Now, using the above formulas, we obtain
$
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {{{\sin }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\sec 2\alpha } \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow 2\alpha + 2\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow 4\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow \alpha = \dfrac{\pi }{6} \\
$
From equation (1)
$
\because x = \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} \\
\Rightarrow 2x = \sqrt 3 \\
$
Therefore, the value of ${\tan ^{ - 1}}(2x)$ is
$
{\tan ^{ - 1}}(2x) = {\tan ^{ - 1}}(\sqrt 3 ) \\
= \dfrac{\pi }{3} \\
$
Hence, the value of ${\tan ^{ - 1}}(2x)$ is $\dfrac{\pi }{3}$
Note- To solve these types of questions, memorize all the formulas of trigonometry like allied angle, addition, double angle, triple angle etc. Understand the concept of domain and range. As in above question, the function is given as ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)$ and we make the function in terms of x such as $x = \cos \alpha $ . So, in this type of questions try to convert inverse terms to solve the questions.
Complete step-by-step answer:
Given that, ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)................(1)$
Therefore $x = \cos \alpha $
And given equation is ${\sin ^{ - 1}}(2x\sqrt {1 - {x^2}} ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right) = \dfrac{{2\pi }}{3}$
Now substitute the value of $x = \cos \alpha $ in the above equation, we get
$ \Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3}$
As we know that
$
1 - {\cos ^2}A = {\sin ^2}A \\
2\sin A\cos A = \sin 2A \\
2{\cos ^2}A - 1 = \cos 2A \\
$
Now, using the above formulas, we obtain
$
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {{{\sin }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\sec 2\alpha } \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow 2\alpha + 2\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow 4\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow \alpha = \dfrac{\pi }{6} \\
$
From equation (1)
$
\because x = \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} \\
\Rightarrow 2x = \sqrt 3 \\
$
Therefore, the value of ${\tan ^{ - 1}}(2x)$ is
$
{\tan ^{ - 1}}(2x) = {\tan ^{ - 1}}(\sqrt 3 ) \\
= \dfrac{\pi }{3} \\
$
Hence, the value of ${\tan ^{ - 1}}(2x)$ is $\dfrac{\pi }{3}$
Note- To solve these types of questions, memorize all the formulas of trigonometry like allied angle, addition, double angle, triple angle etc. Understand the concept of domain and range. As in above question, the function is given as ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)$ and we make the function in terms of x such as $x = \cos \alpha $ . So, in this type of questions try to convert inverse terms to solve the questions.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
Distinguish between asexual and sexual reproduction class 12 biology CBSE
Explain Mendels Monohybrid Cross Give an example class 12 biology CBSE
How do you convert from joules to electron volts class 12 physics CBSE
Derive mirror equation State any three experimental class 12 physics CBSE