Answer
Verified
487.2k+ views
Hint- To evaluate the value of ${\tan ^{ - 1}}(2x)$ we will first find the value of $x$ with the help of given equation, for it we will use some trigonometric formulas such as $\sin 2a = 2\sin a\cos a{\text{ and }}\cos 2a = 2{\cos ^2}a - 1$
Complete step-by-step answer:
Given that, ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)................(1)$
Therefore $x = \cos \alpha $
And given equation is ${\sin ^{ - 1}}(2x\sqrt {1 - {x^2}} ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right) = \dfrac{{2\pi }}{3}$
Now substitute the value of $x = \cos \alpha $ in the above equation, we get
$ \Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3}$
As we know that
$
1 - {\cos ^2}A = {\sin ^2}A \\
2\sin A\cos A = \sin 2A \\
2{\cos ^2}A - 1 = \cos 2A \\
$
Now, using the above formulas, we obtain
$
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {{{\sin }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\sec 2\alpha } \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow 2\alpha + 2\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow 4\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow \alpha = \dfrac{\pi }{6} \\
$
From equation (1)
$
\because x = \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} \\
\Rightarrow 2x = \sqrt 3 \\
$
Therefore, the value of ${\tan ^{ - 1}}(2x)$ is
$
{\tan ^{ - 1}}(2x) = {\tan ^{ - 1}}(\sqrt 3 ) \\
= \dfrac{\pi }{3} \\
$
Hence, the value of ${\tan ^{ - 1}}(2x)$ is $\dfrac{\pi }{3}$
Note- To solve these types of questions, memorize all the formulas of trigonometry like allied angle, addition, double angle, triple angle etc. Understand the concept of domain and range. As in above question, the function is given as ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)$ and we make the function in terms of x such as $x = \cos \alpha $ . So, in this type of questions try to convert inverse terms to solve the questions.
Complete step-by-step answer:
Given that, ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)................(1)$
Therefore $x = \cos \alpha $
And given equation is ${\sin ^{ - 1}}(2x\sqrt {1 - {x^2}} ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right) = \dfrac{{2\pi }}{3}$
Now substitute the value of $x = \cos \alpha $ in the above equation, we get
$ \Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3}$
As we know that
$
1 - {\cos ^2}A = {\sin ^2}A \\
2\sin A\cos A = \sin 2A \\
2{\cos ^2}A - 1 = \cos 2A \\
$
Now, using the above formulas, we obtain
$
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {{{\sin }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\sec 2\alpha } \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow 2\alpha + 2\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow 4\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow \alpha = \dfrac{\pi }{6} \\
$
From equation (1)
$
\because x = \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} \\
\Rightarrow 2x = \sqrt 3 \\
$
Therefore, the value of ${\tan ^{ - 1}}(2x)$ is
$
{\tan ^{ - 1}}(2x) = {\tan ^{ - 1}}(\sqrt 3 ) \\
= \dfrac{\pi }{3} \\
$
Hence, the value of ${\tan ^{ - 1}}(2x)$ is $\dfrac{\pi }{3}$
Note- To solve these types of questions, memorize all the formulas of trigonometry like allied angle, addition, double angle, triple angle etc. Understand the concept of domain and range. As in above question, the function is given as ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)$ and we make the function in terms of x such as $x = \cos \alpha $ . So, in this type of questions try to convert inverse terms to solve the questions.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE