Answer
Verified
496.2k+ views
Hint- To evaluate the value of ${\tan ^{ - 1}}(2x)$ we will first find the value of $x$ with the help of given equation, for it we will use some trigonometric formulas such as $\sin 2a = 2\sin a\cos a{\text{ and }}\cos 2a = 2{\cos ^2}a - 1$
Complete step-by-step answer:
Given that, ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)................(1)$
Therefore $x = \cos \alpha $
And given equation is ${\sin ^{ - 1}}(2x\sqrt {1 - {x^2}} ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right) = \dfrac{{2\pi }}{3}$
Now substitute the value of $x = \cos \alpha $ in the above equation, we get
$ \Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3}$
As we know that
$
1 - {\cos ^2}A = {\sin ^2}A \\
2\sin A\cos A = \sin 2A \\
2{\cos ^2}A - 1 = \cos 2A \\
$
Now, using the above formulas, we obtain
$
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {{{\sin }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\sec 2\alpha } \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow 2\alpha + 2\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow 4\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow \alpha = \dfrac{\pi }{6} \\
$
From equation (1)
$
\because x = \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} \\
\Rightarrow 2x = \sqrt 3 \\
$
Therefore, the value of ${\tan ^{ - 1}}(2x)$ is
$
{\tan ^{ - 1}}(2x) = {\tan ^{ - 1}}(\sqrt 3 ) \\
= \dfrac{\pi }{3} \\
$
Hence, the value of ${\tan ^{ - 1}}(2x)$ is $\dfrac{\pi }{3}$
Note- To solve these types of questions, memorize all the formulas of trigonometry like allied angle, addition, double angle, triple angle etc. Understand the concept of domain and range. As in above question, the function is given as ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)$ and we make the function in terms of x such as $x = \cos \alpha $ . So, in this type of questions try to convert inverse terms to solve the questions.
Complete step-by-step answer:
Given that, ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)................(1)$
Therefore $x = \cos \alpha $
And given equation is ${\sin ^{ - 1}}(2x\sqrt {1 - {x^2}} ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right) = \dfrac{{2\pi }}{3}$
Now substitute the value of $x = \cos \alpha $ in the above equation, we get
$ \Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3}$
As we know that
$
1 - {\cos ^2}A = {\sin ^2}A \\
2\sin A\cos A = \sin 2A \\
2{\cos ^2}A - 1 = \cos 2A \\
$
Now, using the above formulas, we obtain
$
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {{{\sin }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\sec 2\alpha } \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow 2\alpha + 2\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow 4\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow \alpha = \dfrac{\pi }{6} \\
$
From equation (1)
$
\because x = \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} \\
\Rightarrow 2x = \sqrt 3 \\
$
Therefore, the value of ${\tan ^{ - 1}}(2x)$ is
$
{\tan ^{ - 1}}(2x) = {\tan ^{ - 1}}(\sqrt 3 ) \\
= \dfrac{\pi }{3} \\
$
Hence, the value of ${\tan ^{ - 1}}(2x)$ is $\dfrac{\pi }{3}$
Note- To solve these types of questions, memorize all the formulas of trigonometry like allied angle, addition, double angle, triple angle etc. Understand the concept of domain and range. As in above question, the function is given as ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)$ and we make the function in terms of x such as $x = \cos \alpha $ . So, in this type of questions try to convert inverse terms to solve the questions.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE