Answer
Verified
498k+ views
Hint: Use the formula for harmonic mean between two numbers and then simplify the expression.
According to the information given in the question, $\cos \left( {x - y} \right),\cos x$ and $\cos \left( {x + y} \right)$ are in harmonic progression.
We know that, if three numbers a, b and c are in H.P. then b is the harmonic mean of a and c its value is:
$ \Rightarrow b = \frac{{2ac}}{{a + c}}$
Using this result for $\cos \left( {x - y} \right),\cos x$ and $\cos \left( {x + y} \right)$ , we’ll get:
$ \Rightarrow \cos x = \frac{{2\cos \left( {x - y} \right)\cos \left( {x + y} \right)}}{{\cos \left( {x - y} \right) + \cos \left( {x + y} \right)}} .....(i)$
And we also know that, $2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$ . Using this result for the above expression, we’ll get:
$ \Rightarrow \cos x = \frac{{\left( {\cos 2x + \cos 2y} \right)}}{{2\cos x\cos y}}, \\
\Rightarrow 2{\cos ^2}x\cos y = \cos 2x + \cos 2y \\
$
Using $\cos 2x = 2{\cos ^2}x - 1$ , we’ll get:
\[
\Rightarrow 2{\cos ^2}x\cos y = 2{\cos ^2}x - 1 + 2{\cos ^2}y - 1, \\
\Rightarrow 2{\cos ^2}x\cos y - 2{\cos ^2}x = 2{\cos ^2}y - 2, \\
\Rightarrow 2{\cos ^2}x\left( {\cos y - 1} \right) = 2\left( {{{\cos }^2}y - 1} \right), \\
\Rightarrow {\cos ^2}x\left( {\cos y - 1} \right) = \left( {\cos y + 1} \right)\left( {\cos y - 1} \right), \\
\Rightarrow {\cos ^2}x = \cos y + 1, \\
\Rightarrow {\cos ^2}x = 2{\cos ^2}\left( {\frac{y}{2}} \right) - 1 + 1, \\
\]
\[ \Rightarrow {\cos ^2}x = 2{\cos ^2}\left( {\frac{y}{2}} \right),\]
\[
\Rightarrow \frac{{{{\cos }^2}x}}{{{{\cos }^2}\left( {\frac{y}{2}} \right)}} = 2, \\
\Rightarrow {\cos ^2}x{\sec ^2}\left( {\frac{y}{2}} \right) = 2, \\
\Rightarrow \cos x\sec \left( {\frac{y}{2}} \right) = \pm \sqrt 2 \\
\]
Therefore, the value of $\cos x\sec \left( {\frac{y}{2}} \right)$ is \[ \pm \sqrt 2 \] . Thus (A) is correct option.
Note:
Harmonic mean between two numbers a and c is always given as:
H.M. $ = \frac{{2ac}}{{a + c}}$.
But in this case, three numbers a, b and c are in harmonic progression, therefore b is the harmonic mean of a and c. So, we get:
H.M. $ = b$
$ \Rightarrow b = \frac{{2ac}}{{a + c}}$
This is what we used in the above question.
According to the information given in the question, $\cos \left( {x - y} \right),\cos x$ and $\cos \left( {x + y} \right)$ are in harmonic progression.
We know that, if three numbers a, b and c are in H.P. then b is the harmonic mean of a and c its value is:
$ \Rightarrow b = \frac{{2ac}}{{a + c}}$
Using this result for $\cos \left( {x - y} \right),\cos x$ and $\cos \left( {x + y} \right)$ , we’ll get:
$ \Rightarrow \cos x = \frac{{2\cos \left( {x - y} \right)\cos \left( {x + y} \right)}}{{\cos \left( {x - y} \right) + \cos \left( {x + y} \right)}} .....(i)$
And we also know that, $2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$ . Using this result for the above expression, we’ll get:
$ \Rightarrow \cos x = \frac{{\left( {\cos 2x + \cos 2y} \right)}}{{2\cos x\cos y}}, \\
\Rightarrow 2{\cos ^2}x\cos y = \cos 2x + \cos 2y \\
$
Using $\cos 2x = 2{\cos ^2}x - 1$ , we’ll get:
\[
\Rightarrow 2{\cos ^2}x\cos y = 2{\cos ^2}x - 1 + 2{\cos ^2}y - 1, \\
\Rightarrow 2{\cos ^2}x\cos y - 2{\cos ^2}x = 2{\cos ^2}y - 2, \\
\Rightarrow 2{\cos ^2}x\left( {\cos y - 1} \right) = 2\left( {{{\cos }^2}y - 1} \right), \\
\Rightarrow {\cos ^2}x\left( {\cos y - 1} \right) = \left( {\cos y + 1} \right)\left( {\cos y - 1} \right), \\
\Rightarrow {\cos ^2}x = \cos y + 1, \\
\Rightarrow {\cos ^2}x = 2{\cos ^2}\left( {\frac{y}{2}} \right) - 1 + 1, \\
\]
\[ \Rightarrow {\cos ^2}x = 2{\cos ^2}\left( {\frac{y}{2}} \right),\]
\[
\Rightarrow \frac{{{{\cos }^2}x}}{{{{\cos }^2}\left( {\frac{y}{2}} \right)}} = 2, \\
\Rightarrow {\cos ^2}x{\sec ^2}\left( {\frac{y}{2}} \right) = 2, \\
\Rightarrow \cos x\sec \left( {\frac{y}{2}} \right) = \pm \sqrt 2 \\
\]
Therefore, the value of $\cos x\sec \left( {\frac{y}{2}} \right)$ is \[ \pm \sqrt 2 \] . Thus (A) is correct option.
Note:
Harmonic mean between two numbers a and c is always given as:
H.M. $ = \frac{{2ac}}{{a + c}}$.
But in this case, three numbers a, b and c are in harmonic progression, therefore b is the harmonic mean of a and c. So, we get:
H.M. $ = b$
$ \Rightarrow b = \frac{{2ac}}{{a + c}}$
This is what we used in the above question.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers