If $ \cos \theta =\dfrac{5}{13} $ , find the value of $ \dfrac{2\sin \theta -{{\cos }^{2}}\theta }{2\sin \theta \cos \theta }\times \dfrac{1}{{{\tan }^{2}}\theta } $ . \[\]
Answer
Verified
455.1k+ views
Hint:
We recall the definitions of sine, cosine and tangent trigonometric ratios from the right angled triangle. We take the length of the adjacent side as $ b=5 $ and hypotenuse as $ h=13 $ . We find the side $ b $ using Pythagoras theorem. We find $ \sin \theta =\dfrac{p}{h},\tan \theta =\dfrac{p}{b} $ and put the values in given trigonometric expression.\[\]
Complete step by step answer:
We know that in right angled triangle (here $ \Delta ABC $ ) the side opposite to right angled triangle is called hypotenuse denoted as $ h=AC $ , the vertical side is called perpendicular denoted as $ p=AB $ and the horizontal side is called the base denoted as $ b=BC $ .\[\]
We know from the trigonometric ratios in a right angled triangle the sine of any angle is given by the ratio of side opposite to the angle to the hypotenuse. In the figure the sine of the angle $ \theta $ is given by
\[\sin \theta =\dfrac{p}{h}\]
Similarly the cosine of an angle is the ratio of side adjacent to the angle (excluding hypotenuse) to the hypotenuse. So we have cosine of angle $ \theta $
\[\cos \theta =\dfrac{b}{h}.\]
The tangent of the angle is the ratio of opposite side to the adjacent side (excluding hypotenuse) . So we have tangent of the angle of angle $ \theta $
\[\tan \theta =\dfrac{p}{b}\]
We know from Pythagoras theorem that “in a right-angled triangle the square of the hypotenuse is the sum of squares of the other two sides”. So in triangle we have
\[\begin{align}
& {{h}^{2}}={{p}^{2}}+{{b}^{2}} \\
& \Rightarrow {{p}^{2}}={{h}^{2}}-{{b}^{2}} \\
& \Rightarrow p=\sqrt{{{h}^{2}}-{{b}^{2}}} \\
\end{align}\]
We are give in the question that $ \cos \theta =\dfrac{5}{13} $ . So we have;
\[\cos \theta =\dfrac{5}{13}=\dfrac{b}{h}\]
So let us take $ b=5,h=13 $ . So we have
\[p=\sqrt{{{13}^{2}}-{{5}^{2}}}=\sqrt{169-25}=\sqrt{144}=12\]
So we have sine and tangent of the angle as;
$ \begin{align}
& \sin \theta =\dfrac{p}{h}=\dfrac{12}{13} \\
& \tan \theta =\dfrac{p}{b}=\dfrac{12}{5} \\
\end{align} $
We pout the obtained values of \[\sin \theta =\dfrac{12}{13},\tan \theta =\dfrac{12}{5}\] and give value of $ \cos \theta =\dfrac{5}{13} $ in the given expression to have;
\[\begin{align}
& \dfrac{2\sin \theta -{{\cos }^{2}}\theta }{2\sin \theta \cos \theta }\times \dfrac{1}{{{\tan }^{2}}\theta } \\
& \Rightarrow \dfrac{2\times \dfrac{12}{13}-\dfrac{{{5}^{2}}}{{{13}^{2}}}}{2\times \dfrac{12}{13}\times \dfrac{5}{13}}\times \dfrac{1}{{{\left( \dfrac{12}{5} \right)}^{2}}} \\
& \Rightarrow \dfrac{\dfrac{2\times 12\times 13-{{5}^{2}}}{{{13}^{2}}}}{\dfrac{2\times 12\times 5}{{{13}^{2}}}}\times \dfrac{{{5}^{2}}}{{{12}^{2}}} \\
\end{align}\]
We cancel out $ {{13}^{2}} $ from the numerator and denominator to have;
\[\begin{align}
& \Rightarrow \dfrac{312-25}{120}\times \dfrac{25}{144} \\
& \Rightarrow \dfrac{287}{24}\times \dfrac{5}{144}=\dfrac{1435}{3456} \\
\end{align}\]
So the evaluated value is $ \dfrac{1435}{3456} $ .\[\]
Note:
We can alternatively solve by using Pythagorean trigonometric identity $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ to find $ \sin \theta $ and the $ \tan \theta $ from $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ . We note that lengths are always positive and that we have taken positive square roots only. The reciprocal ratios of sine, cosine and tangent are given as $ \operatorname{cosec}\theta =\dfrac{h}{p},\sec \theta =\dfrac{h}{b},\cot \theta =\dfrac{b}{p} $ .
We recall the definitions of sine, cosine and tangent trigonometric ratios from the right angled triangle. We take the length of the adjacent side as $ b=5 $ and hypotenuse as $ h=13 $ . We find the side $ b $ using Pythagoras theorem. We find $ \sin \theta =\dfrac{p}{h},\tan \theta =\dfrac{p}{b} $ and put the values in given trigonometric expression.\[\]
Complete step by step answer:
We know that in right angled triangle (here $ \Delta ABC $ ) the side opposite to right angled triangle is called hypotenuse denoted as $ h=AC $ , the vertical side is called perpendicular denoted as $ p=AB $ and the horizontal side is called the base denoted as $ b=BC $ .\[\]
We know from the trigonometric ratios in a right angled triangle the sine of any angle is given by the ratio of side opposite to the angle to the hypotenuse. In the figure the sine of the angle $ \theta $ is given by
\[\sin \theta =\dfrac{p}{h}\]
Similarly the cosine of an angle is the ratio of side adjacent to the angle (excluding hypotenuse) to the hypotenuse. So we have cosine of angle $ \theta $
\[\cos \theta =\dfrac{b}{h}.\]
The tangent of the angle is the ratio of opposite side to the adjacent side (excluding hypotenuse) . So we have tangent of the angle of angle $ \theta $
\[\tan \theta =\dfrac{p}{b}\]
We know from Pythagoras theorem that “in a right-angled triangle the square of the hypotenuse is the sum of squares of the other two sides”. So in triangle we have
\[\begin{align}
& {{h}^{2}}={{p}^{2}}+{{b}^{2}} \\
& \Rightarrow {{p}^{2}}={{h}^{2}}-{{b}^{2}} \\
& \Rightarrow p=\sqrt{{{h}^{2}}-{{b}^{2}}} \\
\end{align}\]
We are give in the question that $ \cos \theta =\dfrac{5}{13} $ . So we have;
\[\cos \theta =\dfrac{5}{13}=\dfrac{b}{h}\]
So let us take $ b=5,h=13 $ . So we have
\[p=\sqrt{{{13}^{2}}-{{5}^{2}}}=\sqrt{169-25}=\sqrt{144}=12\]
So we have sine and tangent of the angle as;
$ \begin{align}
& \sin \theta =\dfrac{p}{h}=\dfrac{12}{13} \\
& \tan \theta =\dfrac{p}{b}=\dfrac{12}{5} \\
\end{align} $
We pout the obtained values of \[\sin \theta =\dfrac{12}{13},\tan \theta =\dfrac{12}{5}\] and give value of $ \cos \theta =\dfrac{5}{13} $ in the given expression to have;
\[\begin{align}
& \dfrac{2\sin \theta -{{\cos }^{2}}\theta }{2\sin \theta \cos \theta }\times \dfrac{1}{{{\tan }^{2}}\theta } \\
& \Rightarrow \dfrac{2\times \dfrac{12}{13}-\dfrac{{{5}^{2}}}{{{13}^{2}}}}{2\times \dfrac{12}{13}\times \dfrac{5}{13}}\times \dfrac{1}{{{\left( \dfrac{12}{5} \right)}^{2}}} \\
& \Rightarrow \dfrac{\dfrac{2\times 12\times 13-{{5}^{2}}}{{{13}^{2}}}}{\dfrac{2\times 12\times 5}{{{13}^{2}}}}\times \dfrac{{{5}^{2}}}{{{12}^{2}}} \\
\end{align}\]
We cancel out $ {{13}^{2}} $ from the numerator and denominator to have;
\[\begin{align}
& \Rightarrow \dfrac{312-25}{120}\times \dfrac{25}{144} \\
& \Rightarrow \dfrac{287}{24}\times \dfrac{5}{144}=\dfrac{1435}{3456} \\
\end{align}\]
So the evaluated value is $ \dfrac{1435}{3456} $ .\[\]
Note:
We can alternatively solve by using Pythagorean trigonometric identity $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ to find $ \sin \theta $ and the $ \tan \theta $ from $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ . We note that lengths are always positive and that we have taken positive square roots only. The reciprocal ratios of sine, cosine and tangent are given as $ \operatorname{cosec}\theta =\dfrac{h}{p},\sec \theta =\dfrac{h}{b},\cot \theta =\dfrac{b}{p} $ .
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE