Answer
Verified
429k+ views
Hint: We will put the given value of cosine in the formula and then we will solve the question. On doing some simplification we get the required answer.
Formula used: \[\cos 2x\] have four different kinds of formulas.
\[(1)\;\cos 2x = {\cos ^2}x - {\sin ^2}x\]
Now, we know that \[{\cos ^2}x + {\sin ^2}x = 1\].
Using this formula we can derive the following formula also:
\[(2)\;\;\operatorname{Cos} 2x = 1 - 2{\operatorname{Sin} ^2}x\]
Now, using the \[{\cos ^2}x + {\sin ^2}x = 1\], we can convert the \[\cos 2x\]in following way:
\[(3)\;\;\cos 2x = 2{\cos ^2}x - 1\]
\[(4)\;\;\cos 2x = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}\].
Complete Step by Step Solution:
In the above question, the value of ‘\[\cos x\]’ is given.
So, we will put the value of ‘\[\cos x\]’ directly in the formula to derive the value of ‘\[\cos 2x\]’.
So, we will put the value of \[\cos x = \dfrac{5}{{13}}\] in the third formula.
So, we will put \[\cos x = \dfrac{5}{{13}}\]in \[\cos 2x = 2{\cos ^2}x - 1\].
So, after putting this value, we can rewrite the equation in following way:
\[ \Rightarrow \cos 2x = 2 \times {\left( {\dfrac{5}{{13}}} \right)^2} - 1\].
Now, squaring the constant term, we get the following value:
\[ \Rightarrow \cos 2x = 2 \times \left( {\dfrac{{25}}{{169}}} \right) - 1\].
Now, multiply the first two terms, we get the following expression:
\[ \Rightarrow \cos 2x = \dfrac{{50}}{{169}} - 1\].
Now, subtract the above terms, we get the following value:
\[ \Rightarrow \cos 2x = \dfrac{{50 - 169}}{{169}}\].
Now, subtract the terms in numerator, we get the following value:
\[ \Rightarrow \cos 2x = \dfrac{{ - 119}}{{\;\;169}}\].
Now, we can rewrite the above expression in following way:
\[ \Rightarrow \cos 2x = - \dfrac{{119}}{{169}}\].
Therefore, the exact value of \[\cos 2x\] is \[ - \dfrac{{119}}{{169}}\].
Note: Points to remember:
A reflex angle is one that lies between \[{180^ \circ }\] and \[{360^ \circ }\].
It means that it will be either in the \[III\]quadrant or in \[IV\] quadrant.
Recall that for \[{\text{cos}}\theta = \dfrac{{{\text{adjacent}}}}{{{\text{hypotenuse}}}}\].
Hypotenuse is never negative, so the adjacent must be the negative one.
If the adjacent is the negative one, it must be in the \[III\] quadrant.
This also means that the opposite must be negative as well.
Formula used: \[\cos 2x\] have four different kinds of formulas.
\[(1)\;\cos 2x = {\cos ^2}x - {\sin ^2}x\]
Now, we know that \[{\cos ^2}x + {\sin ^2}x = 1\].
Using this formula we can derive the following formula also:
\[(2)\;\;\operatorname{Cos} 2x = 1 - 2{\operatorname{Sin} ^2}x\]
Now, using the \[{\cos ^2}x + {\sin ^2}x = 1\], we can convert the \[\cos 2x\]in following way:
\[(3)\;\;\cos 2x = 2{\cos ^2}x - 1\]
\[(4)\;\;\cos 2x = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}\].
Complete Step by Step Solution:
In the above question, the value of ‘\[\cos x\]’ is given.
So, we will put the value of ‘\[\cos x\]’ directly in the formula to derive the value of ‘\[\cos 2x\]’.
So, we will put the value of \[\cos x = \dfrac{5}{{13}}\] in the third formula.
So, we will put \[\cos x = \dfrac{5}{{13}}\]in \[\cos 2x = 2{\cos ^2}x - 1\].
So, after putting this value, we can rewrite the equation in following way:
\[ \Rightarrow \cos 2x = 2 \times {\left( {\dfrac{5}{{13}}} \right)^2} - 1\].
Now, squaring the constant term, we get the following value:
\[ \Rightarrow \cos 2x = 2 \times \left( {\dfrac{{25}}{{169}}} \right) - 1\].
Now, multiply the first two terms, we get the following expression:
\[ \Rightarrow \cos 2x = \dfrac{{50}}{{169}} - 1\].
Now, subtract the above terms, we get the following value:
\[ \Rightarrow \cos 2x = \dfrac{{50 - 169}}{{169}}\].
Now, subtract the terms in numerator, we get the following value:
\[ \Rightarrow \cos 2x = \dfrac{{ - 119}}{{\;\;169}}\].
Now, we can rewrite the above expression in following way:
\[ \Rightarrow \cos 2x = - \dfrac{{119}}{{169}}\].
Therefore, the exact value of \[\cos 2x\] is \[ - \dfrac{{119}}{{169}}\].
Note: Points to remember:
A reflex angle is one that lies between \[{180^ \circ }\] and \[{360^ \circ }\].
It means that it will be either in the \[III\]quadrant or in \[IV\] quadrant.
Recall that for \[{\text{cos}}\theta = \dfrac{{{\text{adjacent}}}}{{{\text{hypotenuse}}}}\].
Hypotenuse is never negative, so the adjacent must be the negative one.
If the adjacent is the negative one, it must be in the \[III\] quadrant.
This also means that the opposite must be negative as well.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE