
If \[{\Delta _r} = \left| {\begin{array}{*{20}{c}}
r&{2r - 1}&{3r + 2} \\
{\dfrac{n}{2}}&{n - 1}&a \\
{\dfrac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\dfrac{1}{2}\left( {n - 1} \right)\left( {3n + 4} \right)}
\end{array}} \right|\], then the value of\[\sum\limits_{r = 1}^{n - 1} {\Delta r} \]:
A) Depends only on a
B) Depends only on n
C) Depends both on a and n
D) Is Independent of both a and n
Answer
583.8k+ views
Hint: Here we will use the values of summation and then apply elementary row operations to evaluate the value of given determinant.
\[\sum\limits_{x = 1}^{n - 1} x = \dfrac{{n\left( {n - 1} \right)}}{2}\]
Complete step-by-step answer:
The given expression is:-
\[{\Delta _r} = \left| {\begin{array}{*{20}{c}}
r&{2r - 1}&{3r + 2} \\
{\dfrac{n}{2}}&{n - 1}&a \\
{\dfrac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\dfrac{1}{2}\left( {n - 1} \right)\left( {3n + 4} \right)}
\end{array}} \right|\]
We will first evaluate the value of \[\sum\limits_{r = 1}^{n - 1} r \].
Using the following formula:-
\[\sum\limits_{x = 1}^{n - 1} x = \dfrac{{n\left( {n - 1} \right)}}{2}\]
We get:-
\[ \Rightarrow \sum\limits_{r = 1}^{n - 1} r = \dfrac{{n\left( {n - 1} \right)}}{2}\]……………………….(1)
Now we will evaluate the value of\[\sum\limits_{x = 1}^{n - 1} {2r - 1} \].
Splitting the summation we get:-
\[ \Rightarrow \sum\limits_{x = 1}^{n - 1} {2r - 1} = \sum\limits_{x = 1}^{n - 1} {2r} - \sum\limits_{x = 1}^{n - 1} 1 \]
Solving it further we get:-
\[ \Rightarrow \sum\limits_{x = 1}^{n - 1} {2r - 1} = 2\sum\limits_{x = 1}^{n - 1} r - \sum\limits_{x = 1}^{n - 1} 1 \]
Now we know that:-
\[\sum\limits_{r = 1}^{n - 1} 1 = n - 1\]
Putting this value in above equation we get:-
\[ \Rightarrow \sum\limits_{x = 1}^{n - 1} {2r - 1} = 2\sum\limits_{x = 1}^{n - 1} r - \left( {n - 1} \right)\]
Now putting the value from equation 1 we get:-
\[ \Rightarrow \sum\limits_{x = 1}^{n - 1} {2r - 1} = 2\left[ {\dfrac{{n\left( {n - 1} \right)}}{2}} \right] - \left( {n - 1} \right)\]
Solving it further we get:-
\[ \Rightarrow
\sum\limits_{x = 1}^{n - 1} {2r - 1} = n\left( {n - 1} \right) - \left( {n - 1} \right) \\
\Rightarrow \sum\limits_{x = 1}^{n - 1} {2r - 1} = {n^2} - n - n + 1 \\
\Rightarrow \sum\limits_{x = 1}^{n - 1} {2r - 1} = {\left( {n - 1} \right)^2}.................\left( 2 \right) \\
\]
Now we will evaluate the value of \[\sum\limits_{x = 1}^{n - 1} {3r + 2} \]
Splitting the summation we get:-
\[\sum\limits_{x = 1}^{n - 1} {3r + 2} = \sum\limits_{r = 1}^{n - 1} {3r + \sum\limits_{r = 1}^{n - 1} 2 } \]
Solving it further we get:-
\[ \Rightarrow \sum\limits_{x = 1}^{n - 1} {3r + 2} = 3\sum\limits_{r = 1}^{n - 1} {r + 2\sum\limits_{r = 1}^{n - 1} 1 } \]
Now we know that:-
\[\sum\limits_{r = 1}^{n - 1} 1 = n - 1\]
Putting this value in above equation we get:-
\[ \Rightarrow \sum\limits_{x = 1}^{n - 1} {3r + 2} = 3\sum\limits_{r = 1}^{n - 1} r + 2\left( {n - 1} \right)\]
Now putting the value from equation 1 we get:-
\[\sum\limits_{x = 1}^{n - 1} {3r + 2} = 3\left[ {\dfrac{{n\left( {n - 1} \right)}}{2}} \right] + 2n - 2\]
Taking LCM we get:-
\[ \Rightarrow
\sum\limits_{x = 1}^{n - 1} {3r + 2} = \dfrac{{3n\left( {n - 1} \right) + 2\left( {2n - 2} \right)}}{2} \\
\Rightarrow \sum\limits_{x = 1}^{n - 1} {3r + 2} = \dfrac{{3{n^2} - 3n + 4{n^2} - 4n}}{2} \\
\]
Solving it further we get:-
\[\sum\limits_{x = 1}^{n - 1} {3r + 2} = \dfrac{{3n\left( {n - 1} \right) + 2\left( {2n - 2} \right)}}{2}\]
Taking 2 as common we get:-
\[\sum\limits_{x = 1}^{n - 1} {3r + 2} = \dfrac{{3n\left( {n - 1} \right) + 2\left( 2 \right)\left( {n - 1} \right)}}{2}\]
Solving it further we get:-
\[ \Rightarrow
\sum\limits_{x = 1}^{n - 1} {3r + 2} = \dfrac{{\left( {n - 1} \right)\left[ {3n + 2\left( 2 \right)} \right]}}{2} \\
\Rightarrow \sum\limits_{x = 1}^{n - 1} {3r + 2} = \dfrac{{\left( {n - 1} \right)\left[ {3n + 4} \right]}}{2}..........................\left( 3 \right) \\
\]
Now we will evaluate the value of \[\sum\limits_{r = 1}^{n - 1} {\Delta r} \].
Hence we get:-
\[\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} = \left| {\begin{array}{*{20}{c}}
{\sum\limits_{r = 1}^{n - 1} r }&{\sum\limits_{x = 1}^{n - 1} {2r - 1} }&{\sum\limits_{x = 1}^{n - 1} {3r + 2} } \\
{\dfrac{n}{2}}&{n - 1}&a \\
{\dfrac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\dfrac{1}{2}\left( {n - 1} \right)\left( {3n + 4} \right)}
\end{array}} \right|\]
Now putting the values from equation 1, 2 and 3 we get:-
\[\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} = \left| {\begin{array}{*{20}{c}}
{\dfrac{{n\left( {n - 1} \right)}}{2}}&{{{\left( {n - 1} \right)}^2}}&{\dfrac{{\left( {n - 1} \right)\left[ {3n + 4} \right]}}{2}} \\
{\dfrac{n}{2}}&{n - 1}&a \\
{\dfrac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\dfrac{1}{2}\left( {n - 1} \right)\left( {3n + 4} \right)}
\end{array}} \right|\]
Now since we know that if two rows of a determinant are same then its value is zero
Therefore,
\[\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} = 0\]
Hence it is independent of both a and n
Therefore, option D is correct.
Note: Many students make the mistake of opening the summation value completely by writing the sum of each term one by one which will make calculations more complicated. Keep in mind we use the direct formula of sum of terms to avoid lengthy calculations. Also, if two or more rows of a determinant are the same or zero then its value is zero.
Students may mistake while calculating the value of \[\sum\limits_{x = 1}^{n - 1} {3r + 2} \]
The constant term in the summation comes out of it while calculating its value and
\[\sum\limits_{r = 1}^{n - 1} 1 = n - 1\]
\[\sum\limits_{x = 1}^{n - 1} x = \dfrac{{n\left( {n - 1} \right)}}{2}\]
Complete step-by-step answer:
The given expression is:-
\[{\Delta _r} = \left| {\begin{array}{*{20}{c}}
r&{2r - 1}&{3r + 2} \\
{\dfrac{n}{2}}&{n - 1}&a \\
{\dfrac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\dfrac{1}{2}\left( {n - 1} \right)\left( {3n + 4} \right)}
\end{array}} \right|\]
We will first evaluate the value of \[\sum\limits_{r = 1}^{n - 1} r \].
Using the following formula:-
\[\sum\limits_{x = 1}^{n - 1} x = \dfrac{{n\left( {n - 1} \right)}}{2}\]
We get:-
\[ \Rightarrow \sum\limits_{r = 1}^{n - 1} r = \dfrac{{n\left( {n - 1} \right)}}{2}\]……………………….(1)
Now we will evaluate the value of\[\sum\limits_{x = 1}^{n - 1} {2r - 1} \].
Splitting the summation we get:-
\[ \Rightarrow \sum\limits_{x = 1}^{n - 1} {2r - 1} = \sum\limits_{x = 1}^{n - 1} {2r} - \sum\limits_{x = 1}^{n - 1} 1 \]
Solving it further we get:-
\[ \Rightarrow \sum\limits_{x = 1}^{n - 1} {2r - 1} = 2\sum\limits_{x = 1}^{n - 1} r - \sum\limits_{x = 1}^{n - 1} 1 \]
Now we know that:-
\[\sum\limits_{r = 1}^{n - 1} 1 = n - 1\]
Putting this value in above equation we get:-
\[ \Rightarrow \sum\limits_{x = 1}^{n - 1} {2r - 1} = 2\sum\limits_{x = 1}^{n - 1} r - \left( {n - 1} \right)\]
Now putting the value from equation 1 we get:-
\[ \Rightarrow \sum\limits_{x = 1}^{n - 1} {2r - 1} = 2\left[ {\dfrac{{n\left( {n - 1} \right)}}{2}} \right] - \left( {n - 1} \right)\]
Solving it further we get:-
\[ \Rightarrow
\sum\limits_{x = 1}^{n - 1} {2r - 1} = n\left( {n - 1} \right) - \left( {n - 1} \right) \\
\Rightarrow \sum\limits_{x = 1}^{n - 1} {2r - 1} = {n^2} - n - n + 1 \\
\Rightarrow \sum\limits_{x = 1}^{n - 1} {2r - 1} = {\left( {n - 1} \right)^2}.................\left( 2 \right) \\
\]
Now we will evaluate the value of \[\sum\limits_{x = 1}^{n - 1} {3r + 2} \]
Splitting the summation we get:-
\[\sum\limits_{x = 1}^{n - 1} {3r + 2} = \sum\limits_{r = 1}^{n - 1} {3r + \sum\limits_{r = 1}^{n - 1} 2 } \]
Solving it further we get:-
\[ \Rightarrow \sum\limits_{x = 1}^{n - 1} {3r + 2} = 3\sum\limits_{r = 1}^{n - 1} {r + 2\sum\limits_{r = 1}^{n - 1} 1 } \]
Now we know that:-
\[\sum\limits_{r = 1}^{n - 1} 1 = n - 1\]
Putting this value in above equation we get:-
\[ \Rightarrow \sum\limits_{x = 1}^{n - 1} {3r + 2} = 3\sum\limits_{r = 1}^{n - 1} r + 2\left( {n - 1} \right)\]
Now putting the value from equation 1 we get:-
\[\sum\limits_{x = 1}^{n - 1} {3r + 2} = 3\left[ {\dfrac{{n\left( {n - 1} \right)}}{2}} \right] + 2n - 2\]
Taking LCM we get:-
\[ \Rightarrow
\sum\limits_{x = 1}^{n - 1} {3r + 2} = \dfrac{{3n\left( {n - 1} \right) + 2\left( {2n - 2} \right)}}{2} \\
\Rightarrow \sum\limits_{x = 1}^{n - 1} {3r + 2} = \dfrac{{3{n^2} - 3n + 4{n^2} - 4n}}{2} \\
\]
Solving it further we get:-
\[\sum\limits_{x = 1}^{n - 1} {3r + 2} = \dfrac{{3n\left( {n - 1} \right) + 2\left( {2n - 2} \right)}}{2}\]
Taking 2 as common we get:-
\[\sum\limits_{x = 1}^{n - 1} {3r + 2} = \dfrac{{3n\left( {n - 1} \right) + 2\left( 2 \right)\left( {n - 1} \right)}}{2}\]
Solving it further we get:-
\[ \Rightarrow
\sum\limits_{x = 1}^{n - 1} {3r + 2} = \dfrac{{\left( {n - 1} \right)\left[ {3n + 2\left( 2 \right)} \right]}}{2} \\
\Rightarrow \sum\limits_{x = 1}^{n - 1} {3r + 2} = \dfrac{{\left( {n - 1} \right)\left[ {3n + 4} \right]}}{2}..........................\left( 3 \right) \\
\]
Now we will evaluate the value of \[\sum\limits_{r = 1}^{n - 1} {\Delta r} \].
Hence we get:-
\[\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} = \left| {\begin{array}{*{20}{c}}
{\sum\limits_{r = 1}^{n - 1} r }&{\sum\limits_{x = 1}^{n - 1} {2r - 1} }&{\sum\limits_{x = 1}^{n - 1} {3r + 2} } \\
{\dfrac{n}{2}}&{n - 1}&a \\
{\dfrac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\dfrac{1}{2}\left( {n - 1} \right)\left( {3n + 4} \right)}
\end{array}} \right|\]
Now putting the values from equation 1, 2 and 3 we get:-
\[\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} = \left| {\begin{array}{*{20}{c}}
{\dfrac{{n\left( {n - 1} \right)}}{2}}&{{{\left( {n - 1} \right)}^2}}&{\dfrac{{\left( {n - 1} \right)\left[ {3n + 4} \right]}}{2}} \\
{\dfrac{n}{2}}&{n - 1}&a \\
{\dfrac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\dfrac{1}{2}\left( {n - 1} \right)\left( {3n + 4} \right)}
\end{array}} \right|\]
Now since we know that if two rows of a determinant are same then its value is zero
Therefore,
\[\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} = 0\]
Hence it is independent of both a and n
Therefore, option D is correct.
Note: Many students make the mistake of opening the summation value completely by writing the sum of each term one by one which will make calculations more complicated. Keep in mind we use the direct formula of sum of terms to avoid lengthy calculations. Also, if two or more rows of a determinant are the same or zero then its value is zero.
Students may mistake while calculating the value of \[\sum\limits_{x = 1}^{n - 1} {3r + 2} \]
The constant term in the summation comes out of it while calculating its value and
\[\sum\limits_{r = 1}^{n - 1} 1 = n - 1\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

