Answer
Verified
449.7k+ views
Hint: To find the value of $\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|$, we have to convert it in the form of \[\dfrac{{{z}_{2}}}{{{z}_{1}}}\] using appropriate operations, because we know the values of \[\dfrac{{{z}_{2}}}{{{z}_{1}}}\]. Also, we have to make use of the formula |z|= \[\sqrt{{{a}^{2}}+{{b}^{2}}}\] where |z| is called modulus of \[z=a+ib\]
Complete step by step answer:
The question demands that, we have to find the value of the term $\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|$. Let the value of this term be ‘y’. Therefore, we will get,
\[y=\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|.............(i)\]
We are also given in question that $\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$ is purely imaginary. This means we can say that we can represent $\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$ solely in terms of I (iota). Thus,
$\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$= \[ki\]
Where, k is any real number. We can also write the above equation as:
\[\dfrac{{{z}_{2}}}{{{z}_{1}}}=\dfrac{7ki}{5}...............(ii)\]
Now we come back to equation (i). Now we will divide both the numerator and denominator by ‘z’. After doing this we get: -
\[y=\left| \begin{align}
& \dfrac{2{{z}_{1}}+3{{z}_{x}}}{{{z}_{1}}} \\
& \overline{\,\,\dfrac{2{{z}_{1}}+3{{z}_{z}}}{{{z}_{1}}}} \\
\end{align} \right|\]
\[\Rightarrow y=\left| \dfrac{2+3\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)}{2-3\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)} \right|..................(iii)\]
Now, we will substitute value of \[\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)\] from equation (ii) into equation (iii). After doing this we will get:
$\Rightarrow y=\left| \dfrac{2+3\left( \dfrac{7{{k}_{1}}}{5} \right)}{2-3\left( \dfrac{7{{k}_{1}}}{5} \right)} \right|$
On simplifying we will get: -
$\Rightarrow y=\left| \dfrac{2+\dfrac{21ki}{5}}{2-\dfrac{21ki}{5}} \right|$
On taking Lcm and cancelling 5 from both numerator and denominator, we get: -
$\Rightarrow y=\left| \dfrac{10+21ki}{10-21ki} \right|.............(iv)$
Here, we are going to use a property of modulus which is shown below:
$\dfrac{|{{z}_{1}}|}{|{{z}_{2}}|}=\dfrac{|{{z}_{1}}|}{|{{z}_{2}}|}$
In our case ${{z}_{1}}=10+21ki$ and ${{z}_{2}}=10-21ki$
After using this identity, we will get:
$\Rightarrow y=\dfrac{|10+21ki|}{|10-21ki|}....................(v)$
In the above equation, we have to find the modulus of two terms in numerator and denominator respectively. If a complex number is z=a+ib then its modulus is given by the formula:
$|z|=\sqrt{{{a}^{2}}+{{b}^{2}}}$
Therefore, using above formula, we get: -
\[\begin{align}
& \Rightarrow y=\dfrac{\sqrt{{{\left( 10 \right)}^{2}}+{{\left( 21k \right)}^{2}}}}{\sqrt{{{\left( 10 \right)}^{2}}+{{\left( -21k \right)}^{2}}}} \\
& \Rightarrow y=\dfrac{\sqrt{100+441{{k}^{2}}}}{\sqrt{100+441{{k}^{2}}}} \\
& \Rightarrow y=1 \\
& \Rightarrow \left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right| \\
\end{align}\]
So, the correct answer is “Option d”.
Note: We cannot use the modulus formula directly in the starting as shown below: -
$\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|=\dfrac{\sqrt{{{\left( z \right)}^{2}}+{{\left( 3 \right)}^{2}}}}{\sqrt{{{\left( a \right)}^{2}}+{{\left( -3 \right)}^{2}}}}=\dfrac{\sqrt{13}}{\sqrt{13}}=1$
In this case, the answer is the same but the method is wrong because ${{z}_{1}}$ and ${{z}_{2}}$ are both complex numbers. We will have to convert the numerator and denominator into a single complex number of the form a+ib then only we can apply the modulus formula.
Complete step by step answer:
The question demands that, we have to find the value of the term $\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|$. Let the value of this term be ‘y’. Therefore, we will get,
\[y=\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|.............(i)\]
We are also given in question that $\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$ is purely imaginary. This means we can say that we can represent $\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$ solely in terms of I (iota). Thus,
$\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$= \[ki\]
Where, k is any real number. We can also write the above equation as:
\[\dfrac{{{z}_{2}}}{{{z}_{1}}}=\dfrac{7ki}{5}...............(ii)\]
Now we come back to equation (i). Now we will divide both the numerator and denominator by ‘z’. After doing this we get: -
\[y=\left| \begin{align}
& \dfrac{2{{z}_{1}}+3{{z}_{x}}}{{{z}_{1}}} \\
& \overline{\,\,\dfrac{2{{z}_{1}}+3{{z}_{z}}}{{{z}_{1}}}} \\
\end{align} \right|\]
\[\Rightarrow y=\left| \dfrac{2+3\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)}{2-3\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)} \right|..................(iii)\]
Now, we will substitute value of \[\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)\] from equation (ii) into equation (iii). After doing this we will get:
$\Rightarrow y=\left| \dfrac{2+3\left( \dfrac{7{{k}_{1}}}{5} \right)}{2-3\left( \dfrac{7{{k}_{1}}}{5} \right)} \right|$
On simplifying we will get: -
$\Rightarrow y=\left| \dfrac{2+\dfrac{21ki}{5}}{2-\dfrac{21ki}{5}} \right|$
On taking Lcm and cancelling 5 from both numerator and denominator, we get: -
$\Rightarrow y=\left| \dfrac{10+21ki}{10-21ki} \right|.............(iv)$
Here, we are going to use a property of modulus which is shown below:
$\dfrac{|{{z}_{1}}|}{|{{z}_{2}}|}=\dfrac{|{{z}_{1}}|}{|{{z}_{2}}|}$
In our case ${{z}_{1}}=10+21ki$ and ${{z}_{2}}=10-21ki$
After using this identity, we will get:
$\Rightarrow y=\dfrac{|10+21ki|}{|10-21ki|}....................(v)$
In the above equation, we have to find the modulus of two terms in numerator and denominator respectively. If a complex number is z=a+ib then its modulus is given by the formula:
$|z|=\sqrt{{{a}^{2}}+{{b}^{2}}}$
Therefore, using above formula, we get: -
\[\begin{align}
& \Rightarrow y=\dfrac{\sqrt{{{\left( 10 \right)}^{2}}+{{\left( 21k \right)}^{2}}}}{\sqrt{{{\left( 10 \right)}^{2}}+{{\left( -21k \right)}^{2}}}} \\
& \Rightarrow y=\dfrac{\sqrt{100+441{{k}^{2}}}}{\sqrt{100+441{{k}^{2}}}} \\
& \Rightarrow y=1 \\
& \Rightarrow \left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right| \\
\end{align}\]
So, the correct answer is “Option d”.
Note: We cannot use the modulus formula directly in the starting as shown below: -
$\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|=\dfrac{\sqrt{{{\left( z \right)}^{2}}+{{\left( 3 \right)}^{2}}}}{\sqrt{{{\left( a \right)}^{2}}+{{\left( -3 \right)}^{2}}}}=\dfrac{\sqrt{13}}{\sqrt{13}}=1$
In this case, the answer is the same but the method is wrong because ${{z}_{1}}$ and ${{z}_{2}}$ are both complex numbers. We will have to convert the numerator and denominator into a single complex number of the form a+ib then only we can apply the modulus formula.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE