
If $\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$ is purely imaginary, then $\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|$ to
(a) \[\dfrac{5}{7}\]
(b) \[\dfrac{7}{9}\]
(c) \[\dfrac{25}{49}\]
(d) 1
Answer
474.6k+ views
Hint: To find the value of $\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|$, we have to convert it in the form of \[\dfrac{{{z}_{2}}}{{{z}_{1}}}\] using appropriate operations, because we know the values of \[\dfrac{{{z}_{2}}}{{{z}_{1}}}\]. Also, we have to make use of the formula |z|= \[\sqrt{{{a}^{2}}+{{b}^{2}}}\] where |z| is called modulus of \[z=a+ib\]
Complete step by step answer:
The question demands that, we have to find the value of the term $\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|$. Let the value of this term be ‘y’. Therefore, we will get,
\[y=\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|.............(i)\]
We are also given in question that $\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$ is purely imaginary. This means we can say that we can represent $\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$ solely in terms of I (iota). Thus,
$\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$= \[ki\]
Where, k is any real number. We can also write the above equation as:
\[\dfrac{{{z}_{2}}}{{{z}_{1}}}=\dfrac{7ki}{5}...............(ii)\]
Now we come back to equation (i). Now we will divide both the numerator and denominator by ‘z’. After doing this we get: -
\[y=\left| \begin{align}
& \dfrac{2{{z}_{1}}+3{{z}_{x}}}{{{z}_{1}}} \\
& \overline{\,\,\dfrac{2{{z}_{1}}+3{{z}_{z}}}{{{z}_{1}}}} \\
\end{align} \right|\]
\[\Rightarrow y=\left| \dfrac{2+3\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)}{2-3\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)} \right|..................(iii)\]
Now, we will substitute value of \[\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)\] from equation (ii) into equation (iii). After doing this we will get:
$\Rightarrow y=\left| \dfrac{2+3\left( \dfrac{7{{k}_{1}}}{5} \right)}{2-3\left( \dfrac{7{{k}_{1}}}{5} \right)} \right|$
On simplifying we will get: -
$\Rightarrow y=\left| \dfrac{2+\dfrac{21ki}{5}}{2-\dfrac{21ki}{5}} \right|$
On taking Lcm and cancelling 5 from both numerator and denominator, we get: -
$\Rightarrow y=\left| \dfrac{10+21ki}{10-21ki} \right|.............(iv)$
Here, we are going to use a property of modulus which is shown below:
$\dfrac{|{{z}_{1}}|}{|{{z}_{2}}|}=\dfrac{|{{z}_{1}}|}{|{{z}_{2}}|}$
In our case ${{z}_{1}}=10+21ki$ and ${{z}_{2}}=10-21ki$
After using this identity, we will get:
$\Rightarrow y=\dfrac{|10+21ki|}{|10-21ki|}....................(v)$
In the above equation, we have to find the modulus of two terms in numerator and denominator respectively. If a complex number is z=a+ib then its modulus is given by the formula:
$|z|=\sqrt{{{a}^{2}}+{{b}^{2}}}$
Therefore, using above formula, we get: -
\[\begin{align}
& \Rightarrow y=\dfrac{\sqrt{{{\left( 10 \right)}^{2}}+{{\left( 21k \right)}^{2}}}}{\sqrt{{{\left( 10 \right)}^{2}}+{{\left( -21k \right)}^{2}}}} \\
& \Rightarrow y=\dfrac{\sqrt{100+441{{k}^{2}}}}{\sqrt{100+441{{k}^{2}}}} \\
& \Rightarrow y=1 \\
& \Rightarrow \left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right| \\
\end{align}\]
So, the correct answer is “Option d”.
Note: We cannot use the modulus formula directly in the starting as shown below: -
$\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|=\dfrac{\sqrt{{{\left( z \right)}^{2}}+{{\left( 3 \right)}^{2}}}}{\sqrt{{{\left( a \right)}^{2}}+{{\left( -3 \right)}^{2}}}}=\dfrac{\sqrt{13}}{\sqrt{13}}=1$
In this case, the answer is the same but the method is wrong because ${{z}_{1}}$ and ${{z}_{2}}$ are both complex numbers. We will have to convert the numerator and denominator into a single complex number of the form a+ib then only we can apply the modulus formula.
Complete step by step answer:
The question demands that, we have to find the value of the term $\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|$. Let the value of this term be ‘y’. Therefore, we will get,
\[y=\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|.............(i)\]
We are also given in question that $\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$ is purely imaginary. This means we can say that we can represent $\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$ solely in terms of I (iota). Thus,
$\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$= \[ki\]
Where, k is any real number. We can also write the above equation as:
\[\dfrac{{{z}_{2}}}{{{z}_{1}}}=\dfrac{7ki}{5}...............(ii)\]
Now we come back to equation (i). Now we will divide both the numerator and denominator by ‘z’. After doing this we get: -
\[y=\left| \begin{align}
& \dfrac{2{{z}_{1}}+3{{z}_{x}}}{{{z}_{1}}} \\
& \overline{\,\,\dfrac{2{{z}_{1}}+3{{z}_{z}}}{{{z}_{1}}}} \\
\end{align} \right|\]
\[\Rightarrow y=\left| \dfrac{2+3\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)}{2-3\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)} \right|..................(iii)\]
Now, we will substitute value of \[\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)\] from equation (ii) into equation (iii). After doing this we will get:
$\Rightarrow y=\left| \dfrac{2+3\left( \dfrac{7{{k}_{1}}}{5} \right)}{2-3\left( \dfrac{7{{k}_{1}}}{5} \right)} \right|$
On simplifying we will get: -
$\Rightarrow y=\left| \dfrac{2+\dfrac{21ki}{5}}{2-\dfrac{21ki}{5}} \right|$
On taking Lcm and cancelling 5 from both numerator and denominator, we get: -
$\Rightarrow y=\left| \dfrac{10+21ki}{10-21ki} \right|.............(iv)$
Here, we are going to use a property of modulus which is shown below:
$\dfrac{|{{z}_{1}}|}{|{{z}_{2}}|}=\dfrac{|{{z}_{1}}|}{|{{z}_{2}}|}$
In our case ${{z}_{1}}=10+21ki$ and ${{z}_{2}}=10-21ki$
After using this identity, we will get:
$\Rightarrow y=\dfrac{|10+21ki|}{|10-21ki|}....................(v)$
In the above equation, we have to find the modulus of two terms in numerator and denominator respectively. If a complex number is z=a+ib then its modulus is given by the formula:
$|z|=\sqrt{{{a}^{2}}+{{b}^{2}}}$
Therefore, using above formula, we get: -
\[\begin{align}
& \Rightarrow y=\dfrac{\sqrt{{{\left( 10 \right)}^{2}}+{{\left( 21k \right)}^{2}}}}{\sqrt{{{\left( 10 \right)}^{2}}+{{\left( -21k \right)}^{2}}}} \\
& \Rightarrow y=\dfrac{\sqrt{100+441{{k}^{2}}}}{\sqrt{100+441{{k}^{2}}}} \\
& \Rightarrow y=1 \\
& \Rightarrow \left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right| \\
\end{align}\]
So, the correct answer is “Option d”.
Note: We cannot use the modulus formula directly in the starting as shown below: -
$\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|=\dfrac{\sqrt{{{\left( z \right)}^{2}}+{{\left( 3 \right)}^{2}}}}{\sqrt{{{\left( a \right)}^{2}}+{{\left( -3 \right)}^{2}}}}=\dfrac{\sqrt{13}}{\sqrt{13}}=1$
In this case, the answer is the same but the method is wrong because ${{z}_{1}}$ and ${{z}_{2}}$ are both complex numbers. We will have to convert the numerator and denominator into a single complex number of the form a+ib then only we can apply the modulus formula.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
