Answer
Verified
496.2k+ views
Hint: Write the equation of hyperbola and its conjugate. Then find the eccentricities of both and substitute in $\dfrac{1}{{{(e)}^{2}}}+\dfrac{1}{{{(e')}^{2}}}$. You will get the answer.
Complete step-by-step answer:
In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic sections, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ellipse.) If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.
Each branch of the hyperbola has two arms which become straighter (lower curvature) further out from the center of the hyperbola. Diagonally opposite arms, one from each branch, tend in the limit to a common line, called the asymptote of those two arms. So there are two asymptotes, whose intersection is at the center of symmetry of the hyperbola, which can be thought of as the mirror point about which each branch reflects to form the other branch. In the case of the curve, $y(x)=\dfrac{1}{x}$the asymptotes are the two coordinate axes.
The canonical form of a hyperbola is $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$.
For a hyperbola in the above canonical form, the eccentricity is given by $e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}$.
So, the equation of the hyperbola is $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$.
Let $e$ be the eccentricity of the above hyperbola.
Since ${{b}^{2}}={{a}^{2}}({{e}^{2}}-1)$.
Simplifying we get,
\[{{e}^{2}}=1+\dfrac{{{b}^{2}}}{{{a}^{2}}}=\dfrac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}}\]…………… (1)
So, the equation of conjugate of the above hyperbola is $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=-1$.
Let $e'$be the eccentricity of the above hyperbola.
Since ${{a}^{2}}={{b}^{2}}({{(e')}^{2}}-1)$.
Simplifying we get,
\[{{(e')}^{2}}=1+\dfrac{{{a}^{2}}}{{{b}^{2}}}=\dfrac{{{b}^{2}}+{{a}^{2}}}{{{b}^{2}}}\]…………… (2)
Now we want to find $\dfrac{1}{{{(e)}^{2}}}+\dfrac{1}{{{(e')}^{2}}}$.
So now substituting (1) and (2) in the above equation we get,
\[\dfrac{1}{{{(e)}^{2}}}+\dfrac{1}{{{(e')}^{2}}}=\dfrac{1}{\dfrac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}}}+\dfrac{1}{\dfrac{{{b}^{2}}+{{a}^{2}}}{{{b}^{2}}}}\]
Simplifying we get,
\[\dfrac{1}{{{(e)}^{2}}}+\dfrac{1}{{{(e')}^{2}}}=\dfrac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}}+\dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\dfrac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=1\]
Here, we had got the value of\[\dfrac{1}{{{(e)}^{2}}}+\dfrac{1}{{{(e')}^{2}}}\] which is $1$.
So, the correct answer is an option (B).
Note: Read the question carefully. You should know the equation of the eccentricity of the hyperbola. Also, many students make mistakes in writing the conjugate of the hyperbola. So avoid the mistake. Generally, the mistakes are in signs, so avoid it.
Complete step-by-step answer:
In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic sections, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ellipse.) If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.
Each branch of the hyperbola has two arms which become straighter (lower curvature) further out from the center of the hyperbola. Diagonally opposite arms, one from each branch, tend in the limit to a common line, called the asymptote of those two arms. So there are two asymptotes, whose intersection is at the center of symmetry of the hyperbola, which can be thought of as the mirror point about which each branch reflects to form the other branch. In the case of the curve, $y(x)=\dfrac{1}{x}$the asymptotes are the two coordinate axes.
The canonical form of a hyperbola is $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$.
For a hyperbola in the above canonical form, the eccentricity is given by $e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}$.
So, the equation of the hyperbola is $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$.
Let $e$ be the eccentricity of the above hyperbola.
Since ${{b}^{2}}={{a}^{2}}({{e}^{2}}-1)$.
Simplifying we get,
\[{{e}^{2}}=1+\dfrac{{{b}^{2}}}{{{a}^{2}}}=\dfrac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}}\]…………… (1)
So, the equation of conjugate of the above hyperbola is $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=-1$.
Let $e'$be the eccentricity of the above hyperbola.
Since ${{a}^{2}}={{b}^{2}}({{(e')}^{2}}-1)$.
Simplifying we get,
\[{{(e')}^{2}}=1+\dfrac{{{a}^{2}}}{{{b}^{2}}}=\dfrac{{{b}^{2}}+{{a}^{2}}}{{{b}^{2}}}\]…………… (2)
Now we want to find $\dfrac{1}{{{(e)}^{2}}}+\dfrac{1}{{{(e')}^{2}}}$.
So now substituting (1) and (2) in the above equation we get,
\[\dfrac{1}{{{(e)}^{2}}}+\dfrac{1}{{{(e')}^{2}}}=\dfrac{1}{\dfrac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}}}+\dfrac{1}{\dfrac{{{b}^{2}}+{{a}^{2}}}{{{b}^{2}}}}\]
Simplifying we get,
\[\dfrac{1}{{{(e)}^{2}}}+\dfrac{1}{{{(e')}^{2}}}=\dfrac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}}+\dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\dfrac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=1\]
Here, we had got the value of\[\dfrac{1}{{{(e)}^{2}}}+\dfrac{1}{{{(e')}^{2}}}\] which is $1$.
So, the correct answer is an option (B).
Note: Read the question carefully. You should know the equation of the eccentricity of the hyperbola. Also, many students make mistakes in writing the conjugate of the hyperbola. So avoid the mistake. Generally, the mistakes are in signs, so avoid it.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE