Answer
Verified
453k+ views
Hint: Standard cell potential is defined as the potential of the cell under standard conditions, that are, concentrations of one mole per litre, pressure of $1\,atm$ at $25{}^\circ C$ . To get the overall standard cell potential, the potentials of half – cells are added.
Complete step by step answer:
Here, it is given that $E{{{}^\circ }_{F{{e}^{+2}},Fe}}$ is ${{x}_{1}}$ and \[E{{{}^\circ }_{F{{e}^{+3}},Fe}}\] is ${{x}_{2}}$
So, firstly we will write the chemical reaction as follows:
$F{{e}^{2+}}+2{{e}^{-}}\to Fe$ $E{{{}^\circ }_{F{{e}^{+2}},Fe}}={{x}_{1}}$ $-(1)$
$F{{e}^{3+}}+3{{e}^{-}}\to Fe$ \[E{{{}^\circ }_{F{{e}^{+3}},Fe}}={{x}_{2}}\] $-(2)$
Now, we will reverse the $(1)$ equation, we will get
$Fe\to F{{e}^{2+}}+2e$ $E{{{}^\circ }_{Fe,F{{e}^{+2}}}}=-{{x}_{1}}$
And now we will write both the equation $(1)$ and $(2)$
\[Fe\to F{{e}^{2+}}+2{{e}^{-}}\] $E{{{}^\circ }_{Fe,F{{e}^{+2}}}}=-{{x}_{1}}$
\[F{{e}^{3+}}+3{{e}^{-}}\to Fe\] $E{{{}^\circ }_{F{{e}^{+3}},Fe}}={{x}_{2}}$
Solving both the equations, we get,
\[F{{e}^{3+}}+{{e}^{-}}\to F{{e}^{2+}}\]
As we know $E{}^\circ $ is an intensive property, therefore,
\[\Delta G{}^\circ =\Delta G{{{}^\circ }_{1}}+\Delta G{{{}^\circ }_{2}}\]
Also , $\Delta G{}^\circ =-nFE{}^\circ $
\[-nFE{}^\circ =-{{n}_{1}}FE{{{}^\circ }_{1}}-nFE{{{}^\circ }_{2}}\]
\[\Rightarrow nFE{}^\circ ={{n}_{1}}FE{{{}^\circ }_{1}}+nFE{{{}^\circ }_{2}}\]
on solving , we get
\[\Rightarrow E{}^\circ =\dfrac{{{n}_{1}}E{{{}^\circ }_{1}}+nE{{{}^\circ }_{2}}}{n}\]
where, \[G{}^\circ \] is the standard Gibbs free energy,
$E{}^\circ $ is the standard reduction potential,
$F$ is the Faraday’s constant, and,
$n$ is the number of electrons transferred.
Now, we will substitute the above values in the above formula.
$E{}^\circ =\dfrac{-2\times {{x}_{1}}+3\times {{x}_{2}}}{1}$
$\Rightarrow E{}^\circ =-2{{x}_{1}}+3{{x}_{2}}\Rightarrow 3{{x}_{2}}-2{{x}_{1}}$
So, the correct answer is Option A.
Note: 1.\[\Delta G{}^\circ \] is defined as the energy change under standard conditions like pressure at $1atm$ .
2.\[\Delta G\] is the Gibbs free energy which is used for the measurement of energy content. If \[\Delta G\] is less than zero then, it gives an exothermic reaction. If \[\Delta G\] is more than zero, then it gives an endothermic reaction.
3.Standard cell potential $(E{}^\circ )$ is defined as the potential of a cell under concentration of $1$mole per litre and pressure of $1atm$at $25{}^\circ C$ .
4.Faraday’s constant is denoted with the symbol $F$ and is defined as change in coulombs. One Faraday constant is equal to $96500$ $Cmo{{l}^{-1}}$.
$1F=96500$ $Cmo{{l}^{-1}}$
Here, $n$ is the number of electrons transferred in a reaction.
5.The relationship between $\Delta G{}^\circ ,\Delta E{}^\circ ,n,F$ is:
$\Delta G{}^\circ =-nFE{}^\circ $
When we reverse a chemical reaction, its $E{}^\circ $ value gets opposite of the previous $E{}^\circ $ value given.
Complete step by step answer:
Here, it is given that $E{{{}^\circ }_{F{{e}^{+2}},Fe}}$ is ${{x}_{1}}$ and \[E{{{}^\circ }_{F{{e}^{+3}},Fe}}\] is ${{x}_{2}}$
So, firstly we will write the chemical reaction as follows:
$F{{e}^{2+}}+2{{e}^{-}}\to Fe$ $E{{{}^\circ }_{F{{e}^{+2}},Fe}}={{x}_{1}}$ $-(1)$
$F{{e}^{3+}}+3{{e}^{-}}\to Fe$ \[E{{{}^\circ }_{F{{e}^{+3}},Fe}}={{x}_{2}}\] $-(2)$
Now, we will reverse the $(1)$ equation, we will get
$Fe\to F{{e}^{2+}}+2e$ $E{{{}^\circ }_{Fe,F{{e}^{+2}}}}=-{{x}_{1}}$
And now we will write both the equation $(1)$ and $(2)$
\[Fe\to F{{e}^{2+}}+2{{e}^{-}}\] $E{{{}^\circ }_{Fe,F{{e}^{+2}}}}=-{{x}_{1}}$
\[F{{e}^{3+}}+3{{e}^{-}}\to Fe\] $E{{{}^\circ }_{F{{e}^{+3}},Fe}}={{x}_{2}}$
Solving both the equations, we get,
\[F{{e}^{3+}}+{{e}^{-}}\to F{{e}^{2+}}\]
As we know $E{}^\circ $ is an intensive property, therefore,
\[\Delta G{}^\circ =\Delta G{{{}^\circ }_{1}}+\Delta G{{{}^\circ }_{2}}\]
Also , $\Delta G{}^\circ =-nFE{}^\circ $
\[-nFE{}^\circ =-{{n}_{1}}FE{{{}^\circ }_{1}}-nFE{{{}^\circ }_{2}}\]
\[\Rightarrow nFE{}^\circ ={{n}_{1}}FE{{{}^\circ }_{1}}+nFE{{{}^\circ }_{2}}\]
on solving , we get
\[\Rightarrow E{}^\circ =\dfrac{{{n}_{1}}E{{{}^\circ }_{1}}+nE{{{}^\circ }_{2}}}{n}\]
where, \[G{}^\circ \] is the standard Gibbs free energy,
$E{}^\circ $ is the standard reduction potential,
$F$ is the Faraday’s constant, and,
$n$ is the number of electrons transferred.
Now, we will substitute the above values in the above formula.
$E{}^\circ =\dfrac{-2\times {{x}_{1}}+3\times {{x}_{2}}}{1}$
$\Rightarrow E{}^\circ =-2{{x}_{1}}+3{{x}_{2}}\Rightarrow 3{{x}_{2}}-2{{x}_{1}}$
So, the correct answer is Option A.
Note: 1.\[\Delta G{}^\circ \] is defined as the energy change under standard conditions like pressure at $1atm$ .
2.\[\Delta G\] is the Gibbs free energy which is used for the measurement of energy content. If \[\Delta G\] is less than zero then, it gives an exothermic reaction. If \[\Delta G\] is more than zero, then it gives an endothermic reaction.
3.Standard cell potential $(E{}^\circ )$ is defined as the potential of a cell under concentration of $1$mole per litre and pressure of $1atm$at $25{}^\circ C$ .
4.Faraday’s constant is denoted with the symbol $F$ and is defined as change in coulombs. One Faraday constant is equal to $96500$ $Cmo{{l}^{-1}}$.
$1F=96500$ $Cmo{{l}^{-1}}$
Here, $n$ is the number of electrons transferred in a reaction.
5.The relationship between $\Delta G{}^\circ ,\Delta E{}^\circ ,n,F$ is:
$\Delta G{}^\circ =-nFE{}^\circ $
When we reverse a chemical reaction, its $E{}^\circ $ value gets opposite of the previous $E{}^\circ $ value given.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
The number of moles of KMnO4 that will be needed to class 11 chemistry JEE_Main
The oxidation process involves class 11 chemistry JEE_Main
A car starts from rest to cover a distance s The coefficient class 11 physics JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE