If electron charge e, electron mass m, speed of light in vacuum c and Planck's constant h are taken as fundamental constant h are taken as fundamental quantities, the permeability of vacuum ${\mu}_{0}$ can be expressed in units of
A. $(\dfrac {m{c}^{2}}{h{e}^{2}})$
B. $(\dfrac {h}{m{e}^{2}})$
C. $(\dfrac {hc}{m{e}^{2}})$
D. $(\dfrac {h}{c{e}^{2}})$
Answer
Verified
461.4k+ views
Hint: To solve this problem, first write the dimensions of permeability of vacuum in terms of other fundamental quantities i.e. e, c, h and m. Substitute the dimensions of all the above mentioned fundamental quantities. Consider exponents of these fundamental quantities to be a, b, c and d. Now, compare the powers on both the sides and find the value of a, b, c and d. Substitute these values back in the first equation. Then, write the dimensions in equation form. This will give the permeability of vacuum in terms of mentioned fundamental quantities.
Complete step by step answer:
The dimensions of permeability of vacuum in terms of other fundamental quantities can be written as,
$[{\mu}_{0}]= [{e}^{a}{c}^{b}{h}^{c}{m}^{d}]$ ...(1)
Dimensions of ${\mu}_{0}$ are $[ML{T}^{-2}{A}^{-2}]$.
Dimensions of e are $[AT]$.
Dimensions of c are $[L{T}^{-1}]$.
Dimensions of h are $[M{L}^{2}{T}^{-1}]$.
Dimensions of m are $[M]$.
Substituting all the values in the equation. (1) we get,
$[ML{T}^{-2}{A}^{-2}]= {[AT]}^{a} {[L{T}^{-1}]}^{b}{ [M{L}^{2}{T}^{-1}]}^{c} {[M]}^{d}$
$[ML{T}^{-2}{A}^{-2}]=[{A}^{a}{L}^{b+ 2c}{T}^{a-b-c}{M}^{c+d}]$
Equating the powers on both the sides we get,
$c+d=1$ ...(2)
$b+2c=1$ ...(3)
$a-b-c=-2$ ...(4)
$a=-2$ ...(5)
Substituting value of a in equation. (4) we get,
$b+c= 0$ ...(6)
Subtracting equation. (6) and (3) we get,
$c=1$
Substituting value of a and c in equation. (4) we get,
$b=-1$
Now, substituting the value of c in the equation. (2) we get,
$d=0$
Substituting these values in the equation. (1) we get,
$[{\mu}_{0}]= [{e}^{-2}{c}^{-1}{h}^{1}{m}^{0}]$
$\Rightarrow [{\mu}_{0}]= [{e}^{-2}{c}^{-1}{h}^{1}]$
$\Rightarrow {\mu}_{0}= \dfrac {h}{c{e}^{2}}$
Hence, the permeability of vacuum ${\mu}_{0}$ can be expressed in units of $(\dfrac {h}{c{e}^{2}})$.
So, the correct answer is “Option D”.
Note: To solve these types of questions, students must know the dimensions of questions or the units of each quantity. Dimensions of a quantity are basically based on the unit of the quantity. So, if students know the unit of a quantity they can derive the dimension of that respective physical or fundamental quantity.
Complete step by step answer:
The dimensions of permeability of vacuum in terms of other fundamental quantities can be written as,
$[{\mu}_{0}]= [{e}^{a}{c}^{b}{h}^{c}{m}^{d}]$ ...(1)
Dimensions of ${\mu}_{0}$ are $[ML{T}^{-2}{A}^{-2}]$.
Dimensions of e are $[AT]$.
Dimensions of c are $[L{T}^{-1}]$.
Dimensions of h are $[M{L}^{2}{T}^{-1}]$.
Dimensions of m are $[M]$.
Substituting all the values in the equation. (1) we get,
$[ML{T}^{-2}{A}^{-2}]= {[AT]}^{a} {[L{T}^{-1}]}^{b}{ [M{L}^{2}{T}^{-1}]}^{c} {[M]}^{d}$
$[ML{T}^{-2}{A}^{-2}]=[{A}^{a}{L}^{b+ 2c}{T}^{a-b-c}{M}^{c+d}]$
Equating the powers on both the sides we get,
$c+d=1$ ...(2)
$b+2c=1$ ...(3)
$a-b-c=-2$ ...(4)
$a=-2$ ...(5)
Substituting value of a in equation. (4) we get,
$b+c= 0$ ...(6)
Subtracting equation. (6) and (3) we get,
$c=1$
Substituting value of a and c in equation. (4) we get,
$b=-1$
Now, substituting the value of c in the equation. (2) we get,
$d=0$
Substituting these values in the equation. (1) we get,
$[{\mu}_{0}]= [{e}^{-2}{c}^{-1}{h}^{1}{m}^{0}]$
$\Rightarrow [{\mu}_{0}]= [{e}^{-2}{c}^{-1}{h}^{1}]$
$\Rightarrow {\mu}_{0}= \dfrac {h}{c{e}^{2}}$
Hence, the permeability of vacuum ${\mu}_{0}$ can be expressed in units of $(\dfrac {h}{c{e}^{2}})$.
So, the correct answer is “Option D”.
Note: To solve these types of questions, students must know the dimensions of questions or the units of each quantity. Dimensions of a quantity are basically based on the unit of the quantity. So, if students know the unit of a quantity they can derive the dimension of that respective physical or fundamental quantity.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE