
If $f\left( x \right) + f\left( y \right) + f\left( {xy} \right) = 2 + f\left( x \right)f\left( y \right)\,\,\forall x,y \in R$ and $f\left( x \right)$ is polynomial with $f\left( 4 \right) = 17$. Find $\dfrac{{f\left( 5 \right)}}{{13}}$.
Answer
584.1k+ views
Hint: First, substitute $y = \dfrac{1}{x}$ and then substitute x=1 which give two values of f(1). After that put y=1 which gives the value of f(1)=2. Substitute the value of f(1) in the equation which will give the function $f\left( x \right) = \pm {x^n} + 1$. Now substitute the value f(4)=17 to find the exact function. After that calculate the value of $\dfrac{{f\left( 5 \right)}}{{13}}$.
Complete step-by-step answer:
Given:- $f\left( x \right) + f\left( y \right) + f\left( {xy} \right) = 2 + f\left( x \right)f\left( y \right)$ …..(1)
$f\left( 4 \right) = 17$ .
Substitute $y = \dfrac{1}{x}$,
$\Rightarrow$$f\left( x \right) + f\left( {\dfrac{1}{x}} \right) + f\left( 1 \right) = 2 + f\left( x \right)f\left( {\dfrac{1}{x}} \right)$ ….(2)
Now substitute x=1 in the above equation,
$\Rightarrow$$f\left( 1 \right) + f\left( 1 \right) + f\left( 1 \right) = 2 + f\left( 1 \right)f\left( 1 \right)$
Move all terms to one side,
$\Rightarrow$${f^2}\left( 1 \right) - 3f\left( 1 \right) + 2 = 0$
Resolve the equation,
$\Rightarrow$${f^2}\left( 1 \right) - 2f\left( 1 \right) - f\left( 1 \right) + 2 = 0$
Take out common factors,
$\Rightarrow$$f\left( 1 \right)\left[ {f\left( 1 \right) - 2} \right] - 1\left[ {f\left( 1 \right) - 2} \right] = 0$
Take the common factors,
$\Rightarrow$$\left[ {f\left( 1 \right) - 2} \right]\left[ {f\left( 1 \right) - 1} \right] = 0$
Equate $f\left( 1 \right) - 2$ to 0,
$\Rightarrow$$f\left( 1 \right) - 2 = 0$
Move 2 to other sides,
$\Rightarrow$$f\left( 1 \right) = 2$
Now, equate $f\left( 1 \right) - 1$ to 0,
$\Rightarrow$$f\left( 1 \right) - 1 = 0$
Move 1 to other sides,
$\Rightarrow$$f\left( 1 \right) = 1$
Thus, $f\left( 1 \right) = 1,2$
Now, put y=1 in equation (1),
$\Rightarrow$$f\left( x \right) + f\left( 1 \right) + f\left( x \right) = 2 + f\left( x \right)f\left( 1 \right)$
Add the like terms,
$\Rightarrow$$2f\left( x \right) + f\left( 1 \right) = 2 + f\left( x \right)f\left( 1 \right)$
Move all terms to one side,
$\Rightarrow$$f\left( x \right)f\left( 1 \right) - 2f\left( x \right) - f\left( 1 \right) + 2 = 0$
Take out common factors,
$\Rightarrow$$f\left( x \right)\left[ {f\left( 1 \right) - 2} \right] - 1\left[ {f\left( 1 \right) - 2} \right] = 0$
Take the common factors,
$\Rightarrow$$\left[ {f\left( 1 \right) - 2} \right]\left[ {f\left( x \right) - 1} \right] = 0$
Equate $f\left( 1 \right) - 2$ to 0,
$\Rightarrow$$f\left( 1 \right) - 2 = 0$
Move 2 to other sides,
$\Rightarrow$$f\left( 1 \right) = 2$
Now, equate $f\left( x \right) - 1$ to 0,
$\Rightarrow$$f\left( x \right) - 1 = 0$
Move 1 to other sides,
$\Rightarrow$$f\left( x \right) = 1$
It shows that the function $f\left( x \right)$ is constant. But, $f\left( 4 \right) = 17$.
So, it is not possible.
Thus, $f\left( 1 \right) = 2$.
Now, substitute the value of $f\left( 1 \right)$ in equation (2),
$f\left( x \right) + f\left( {\dfrac{1}{x}} \right) + 2 = 2 + f\left( x \right) + f\left( {\dfrac{1}{x}} \right)$
Cancel out 2 from both sides,
$\Rightarrow$$f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = f\left( x \right) + f\left( {\dfrac{1}{x}} \right)$
When the equation is in this form. Then,
$\Rightarrow$$f\left( x \right) = \pm {x^n} + 1$ …..(3)
As $f\left( 4 \right) = 17$. Put $f\left( x \right) = 17$ and x=4,
$17 = \pm {4^n} + 1$
Move 1 to the other side and subtract from 17.
$\Rightarrow$$ \pm {4^n} = 16$
Since, the negative sign is not possible. So, neglect the negative sign,
$\Rightarrow$${4^n} = {4^2}$
Since, the base is the same. So, equate the power,
$\Rightarrow$$n = 2$
Substitute the value of n in equation (3),
$\Rightarrow$$f\left( x \right) = {x^2} + 1$
Now, find $\dfrac{{f\left( 5 \right)}}{{13}}$.
$\Rightarrow$$\dfrac{{f\left( 5 \right)}}{{13}} = \dfrac{{{5^2} + 1}}{{13}}$
Square 5 and add 1 in the numerator,
$\Rightarrow$$\dfrac{{f\left( 5 \right)}}{{13}} = \dfrac{{26}}{{13}}$
Cancel out common factors from numerator and denominator,
$\Rightarrow$$\dfrac{{f\left( 5 \right)}}{{13}} = 2$.
Hence, the value of $\dfrac{{f\left( 5 \right)}}{{13}}$ is 2.
Note: The students might make mistake if they are unaware of the solution to the equation $f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = f\left( x \right) + f\left( {\dfrac{1}{x}} \right)$.
A function is a relation which describes that there should be only one output for each input. We can say that a special kind of relation (a set of ordered pairs) which follows a rule i.e every X-value should be associated with only one y-value is called a function.
Complete step-by-step answer:
Given:- $f\left( x \right) + f\left( y \right) + f\left( {xy} \right) = 2 + f\left( x \right)f\left( y \right)$ …..(1)
$f\left( 4 \right) = 17$ .
Substitute $y = \dfrac{1}{x}$,
$\Rightarrow$$f\left( x \right) + f\left( {\dfrac{1}{x}} \right) + f\left( 1 \right) = 2 + f\left( x \right)f\left( {\dfrac{1}{x}} \right)$ ….(2)
Now substitute x=1 in the above equation,
$\Rightarrow$$f\left( 1 \right) + f\left( 1 \right) + f\left( 1 \right) = 2 + f\left( 1 \right)f\left( 1 \right)$
Move all terms to one side,
$\Rightarrow$${f^2}\left( 1 \right) - 3f\left( 1 \right) + 2 = 0$
Resolve the equation,
$\Rightarrow$${f^2}\left( 1 \right) - 2f\left( 1 \right) - f\left( 1 \right) + 2 = 0$
Take out common factors,
$\Rightarrow$$f\left( 1 \right)\left[ {f\left( 1 \right) - 2} \right] - 1\left[ {f\left( 1 \right) - 2} \right] = 0$
Take the common factors,
$\Rightarrow$$\left[ {f\left( 1 \right) - 2} \right]\left[ {f\left( 1 \right) - 1} \right] = 0$
Equate $f\left( 1 \right) - 2$ to 0,
$\Rightarrow$$f\left( 1 \right) - 2 = 0$
Move 2 to other sides,
$\Rightarrow$$f\left( 1 \right) = 2$
Now, equate $f\left( 1 \right) - 1$ to 0,
$\Rightarrow$$f\left( 1 \right) - 1 = 0$
Move 1 to other sides,
$\Rightarrow$$f\left( 1 \right) = 1$
Thus, $f\left( 1 \right) = 1,2$
Now, put y=1 in equation (1),
$\Rightarrow$$f\left( x \right) + f\left( 1 \right) + f\left( x \right) = 2 + f\left( x \right)f\left( 1 \right)$
Add the like terms,
$\Rightarrow$$2f\left( x \right) + f\left( 1 \right) = 2 + f\left( x \right)f\left( 1 \right)$
Move all terms to one side,
$\Rightarrow$$f\left( x \right)f\left( 1 \right) - 2f\left( x \right) - f\left( 1 \right) + 2 = 0$
Take out common factors,
$\Rightarrow$$f\left( x \right)\left[ {f\left( 1 \right) - 2} \right] - 1\left[ {f\left( 1 \right) - 2} \right] = 0$
Take the common factors,
$\Rightarrow$$\left[ {f\left( 1 \right) - 2} \right]\left[ {f\left( x \right) - 1} \right] = 0$
Equate $f\left( 1 \right) - 2$ to 0,
$\Rightarrow$$f\left( 1 \right) - 2 = 0$
Move 2 to other sides,
$\Rightarrow$$f\left( 1 \right) = 2$
Now, equate $f\left( x \right) - 1$ to 0,
$\Rightarrow$$f\left( x \right) - 1 = 0$
Move 1 to other sides,
$\Rightarrow$$f\left( x \right) = 1$
It shows that the function $f\left( x \right)$ is constant. But, $f\left( 4 \right) = 17$.
So, it is not possible.
Thus, $f\left( 1 \right) = 2$.
Now, substitute the value of $f\left( 1 \right)$ in equation (2),
$f\left( x \right) + f\left( {\dfrac{1}{x}} \right) + 2 = 2 + f\left( x \right) + f\left( {\dfrac{1}{x}} \right)$
Cancel out 2 from both sides,
$\Rightarrow$$f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = f\left( x \right) + f\left( {\dfrac{1}{x}} \right)$
When the equation is in this form. Then,
$\Rightarrow$$f\left( x \right) = \pm {x^n} + 1$ …..(3)
As $f\left( 4 \right) = 17$. Put $f\left( x \right) = 17$ and x=4,
$17 = \pm {4^n} + 1$
Move 1 to the other side and subtract from 17.
$\Rightarrow$$ \pm {4^n} = 16$
Since, the negative sign is not possible. So, neglect the negative sign,
$\Rightarrow$${4^n} = {4^2}$
Since, the base is the same. So, equate the power,
$\Rightarrow$$n = 2$
Substitute the value of n in equation (3),
$\Rightarrow$$f\left( x \right) = {x^2} + 1$
Now, find $\dfrac{{f\left( 5 \right)}}{{13}}$.
$\Rightarrow$$\dfrac{{f\left( 5 \right)}}{{13}} = \dfrac{{{5^2} + 1}}{{13}}$
Square 5 and add 1 in the numerator,
$\Rightarrow$$\dfrac{{f\left( 5 \right)}}{{13}} = \dfrac{{26}}{{13}}$
Cancel out common factors from numerator and denominator,
$\Rightarrow$$\dfrac{{f\left( 5 \right)}}{{13}} = 2$.
Hence, the value of $\dfrac{{f\left( 5 \right)}}{{13}}$ is 2.
Note: The students might make mistake if they are unaware of the solution to the equation $f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = f\left( x \right) + f\left( {\dfrac{1}{x}} \right)$.
A function is a relation which describes that there should be only one output for each input. We can say that a special kind of relation (a set of ordered pairs) which follows a rule i.e every X-value should be associated with only one y-value is called a function.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

