
If $f\left( x \right) + f\left( y \right) + f\left( {xy} \right) = 2 + f\left( x \right)f\left( y \right)\,\,\forall x,y \in R$ and $f\left( x \right)$ is polynomial with $f\left( 4 \right) = 17$. Find $\dfrac{{f\left( 5 \right)}}{{13}}$.
Answer
569.7k+ views
Hint: First, substitute $y = \dfrac{1}{x}$ and then substitute x=1 which give two values of f(1). After that put y=1 which gives the value of f(1)=2. Substitute the value of f(1) in the equation which will give the function $f\left( x \right) = \pm {x^n} + 1$. Now substitute the value f(4)=17 to find the exact function. After that calculate the value of $\dfrac{{f\left( 5 \right)}}{{13}}$.
Complete step-by-step answer:
Given:- $f\left( x \right) + f\left( y \right) + f\left( {xy} \right) = 2 + f\left( x \right)f\left( y \right)$ …..(1)
$f\left( 4 \right) = 17$ .
Substitute $y = \dfrac{1}{x}$,
$\Rightarrow$$f\left( x \right) + f\left( {\dfrac{1}{x}} \right) + f\left( 1 \right) = 2 + f\left( x \right)f\left( {\dfrac{1}{x}} \right)$ ….(2)
Now substitute x=1 in the above equation,
$\Rightarrow$$f\left( 1 \right) + f\left( 1 \right) + f\left( 1 \right) = 2 + f\left( 1 \right)f\left( 1 \right)$
Move all terms to one side,
$\Rightarrow$${f^2}\left( 1 \right) - 3f\left( 1 \right) + 2 = 0$
Resolve the equation,
$\Rightarrow$${f^2}\left( 1 \right) - 2f\left( 1 \right) - f\left( 1 \right) + 2 = 0$
Take out common factors,
$\Rightarrow$$f\left( 1 \right)\left[ {f\left( 1 \right) - 2} \right] - 1\left[ {f\left( 1 \right) - 2} \right] = 0$
Take the common factors,
$\Rightarrow$$\left[ {f\left( 1 \right) - 2} \right]\left[ {f\left( 1 \right) - 1} \right] = 0$
Equate $f\left( 1 \right) - 2$ to 0,
$\Rightarrow$$f\left( 1 \right) - 2 = 0$
Move 2 to other sides,
$\Rightarrow$$f\left( 1 \right) = 2$
Now, equate $f\left( 1 \right) - 1$ to 0,
$\Rightarrow$$f\left( 1 \right) - 1 = 0$
Move 1 to other sides,
$\Rightarrow$$f\left( 1 \right) = 1$
Thus, $f\left( 1 \right) = 1,2$
Now, put y=1 in equation (1),
$\Rightarrow$$f\left( x \right) + f\left( 1 \right) + f\left( x \right) = 2 + f\left( x \right)f\left( 1 \right)$
Add the like terms,
$\Rightarrow$$2f\left( x \right) + f\left( 1 \right) = 2 + f\left( x \right)f\left( 1 \right)$
Move all terms to one side,
$\Rightarrow$$f\left( x \right)f\left( 1 \right) - 2f\left( x \right) - f\left( 1 \right) + 2 = 0$
Take out common factors,
$\Rightarrow$$f\left( x \right)\left[ {f\left( 1 \right) - 2} \right] - 1\left[ {f\left( 1 \right) - 2} \right] = 0$
Take the common factors,
$\Rightarrow$$\left[ {f\left( 1 \right) - 2} \right]\left[ {f\left( x \right) - 1} \right] = 0$
Equate $f\left( 1 \right) - 2$ to 0,
$\Rightarrow$$f\left( 1 \right) - 2 = 0$
Move 2 to other sides,
$\Rightarrow$$f\left( 1 \right) = 2$
Now, equate $f\left( x \right) - 1$ to 0,
$\Rightarrow$$f\left( x \right) - 1 = 0$
Move 1 to other sides,
$\Rightarrow$$f\left( x \right) = 1$
It shows that the function $f\left( x \right)$ is constant. But, $f\left( 4 \right) = 17$.
So, it is not possible.
Thus, $f\left( 1 \right) = 2$.
Now, substitute the value of $f\left( 1 \right)$ in equation (2),
$f\left( x \right) + f\left( {\dfrac{1}{x}} \right) + 2 = 2 + f\left( x \right) + f\left( {\dfrac{1}{x}} \right)$
Cancel out 2 from both sides,
$\Rightarrow$$f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = f\left( x \right) + f\left( {\dfrac{1}{x}} \right)$
When the equation is in this form. Then,
$\Rightarrow$$f\left( x \right) = \pm {x^n} + 1$ …..(3)
As $f\left( 4 \right) = 17$. Put $f\left( x \right) = 17$ and x=4,
$17 = \pm {4^n} + 1$
Move 1 to the other side and subtract from 17.
$\Rightarrow$$ \pm {4^n} = 16$
Since, the negative sign is not possible. So, neglect the negative sign,
$\Rightarrow$${4^n} = {4^2}$
Since, the base is the same. So, equate the power,
$\Rightarrow$$n = 2$
Substitute the value of n in equation (3),
$\Rightarrow$$f\left( x \right) = {x^2} + 1$
Now, find $\dfrac{{f\left( 5 \right)}}{{13}}$.
$\Rightarrow$$\dfrac{{f\left( 5 \right)}}{{13}} = \dfrac{{{5^2} + 1}}{{13}}$
Square 5 and add 1 in the numerator,
$\Rightarrow$$\dfrac{{f\left( 5 \right)}}{{13}} = \dfrac{{26}}{{13}}$
Cancel out common factors from numerator and denominator,
$\Rightarrow$$\dfrac{{f\left( 5 \right)}}{{13}} = 2$.
Hence, the value of $\dfrac{{f\left( 5 \right)}}{{13}}$ is 2.
Note: The students might make mistake if they are unaware of the solution to the equation $f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = f\left( x \right) + f\left( {\dfrac{1}{x}} \right)$.
A function is a relation which describes that there should be only one output for each input. We can say that a special kind of relation (a set of ordered pairs) which follows a rule i.e every X-value should be associated with only one y-value is called a function.
Complete step-by-step answer:
Given:- $f\left( x \right) + f\left( y \right) + f\left( {xy} \right) = 2 + f\left( x \right)f\left( y \right)$ …..(1)
$f\left( 4 \right) = 17$ .
Substitute $y = \dfrac{1}{x}$,
$\Rightarrow$$f\left( x \right) + f\left( {\dfrac{1}{x}} \right) + f\left( 1 \right) = 2 + f\left( x \right)f\left( {\dfrac{1}{x}} \right)$ ….(2)
Now substitute x=1 in the above equation,
$\Rightarrow$$f\left( 1 \right) + f\left( 1 \right) + f\left( 1 \right) = 2 + f\left( 1 \right)f\left( 1 \right)$
Move all terms to one side,
$\Rightarrow$${f^2}\left( 1 \right) - 3f\left( 1 \right) + 2 = 0$
Resolve the equation,
$\Rightarrow$${f^2}\left( 1 \right) - 2f\left( 1 \right) - f\left( 1 \right) + 2 = 0$
Take out common factors,
$\Rightarrow$$f\left( 1 \right)\left[ {f\left( 1 \right) - 2} \right] - 1\left[ {f\left( 1 \right) - 2} \right] = 0$
Take the common factors,
$\Rightarrow$$\left[ {f\left( 1 \right) - 2} \right]\left[ {f\left( 1 \right) - 1} \right] = 0$
Equate $f\left( 1 \right) - 2$ to 0,
$\Rightarrow$$f\left( 1 \right) - 2 = 0$
Move 2 to other sides,
$\Rightarrow$$f\left( 1 \right) = 2$
Now, equate $f\left( 1 \right) - 1$ to 0,
$\Rightarrow$$f\left( 1 \right) - 1 = 0$
Move 1 to other sides,
$\Rightarrow$$f\left( 1 \right) = 1$
Thus, $f\left( 1 \right) = 1,2$
Now, put y=1 in equation (1),
$\Rightarrow$$f\left( x \right) + f\left( 1 \right) + f\left( x \right) = 2 + f\left( x \right)f\left( 1 \right)$
Add the like terms,
$\Rightarrow$$2f\left( x \right) + f\left( 1 \right) = 2 + f\left( x \right)f\left( 1 \right)$
Move all terms to one side,
$\Rightarrow$$f\left( x \right)f\left( 1 \right) - 2f\left( x \right) - f\left( 1 \right) + 2 = 0$
Take out common factors,
$\Rightarrow$$f\left( x \right)\left[ {f\left( 1 \right) - 2} \right] - 1\left[ {f\left( 1 \right) - 2} \right] = 0$
Take the common factors,
$\Rightarrow$$\left[ {f\left( 1 \right) - 2} \right]\left[ {f\left( x \right) - 1} \right] = 0$
Equate $f\left( 1 \right) - 2$ to 0,
$\Rightarrow$$f\left( 1 \right) - 2 = 0$
Move 2 to other sides,
$\Rightarrow$$f\left( 1 \right) = 2$
Now, equate $f\left( x \right) - 1$ to 0,
$\Rightarrow$$f\left( x \right) - 1 = 0$
Move 1 to other sides,
$\Rightarrow$$f\left( x \right) = 1$
It shows that the function $f\left( x \right)$ is constant. But, $f\left( 4 \right) = 17$.
So, it is not possible.
Thus, $f\left( 1 \right) = 2$.
Now, substitute the value of $f\left( 1 \right)$ in equation (2),
$f\left( x \right) + f\left( {\dfrac{1}{x}} \right) + 2 = 2 + f\left( x \right) + f\left( {\dfrac{1}{x}} \right)$
Cancel out 2 from both sides,
$\Rightarrow$$f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = f\left( x \right) + f\left( {\dfrac{1}{x}} \right)$
When the equation is in this form. Then,
$\Rightarrow$$f\left( x \right) = \pm {x^n} + 1$ …..(3)
As $f\left( 4 \right) = 17$. Put $f\left( x \right) = 17$ and x=4,
$17 = \pm {4^n} + 1$
Move 1 to the other side and subtract from 17.
$\Rightarrow$$ \pm {4^n} = 16$
Since, the negative sign is not possible. So, neglect the negative sign,
$\Rightarrow$${4^n} = {4^2}$
Since, the base is the same. So, equate the power,
$\Rightarrow$$n = 2$
Substitute the value of n in equation (3),
$\Rightarrow$$f\left( x \right) = {x^2} + 1$
Now, find $\dfrac{{f\left( 5 \right)}}{{13}}$.
$\Rightarrow$$\dfrac{{f\left( 5 \right)}}{{13}} = \dfrac{{{5^2} + 1}}{{13}}$
Square 5 and add 1 in the numerator,
$\Rightarrow$$\dfrac{{f\left( 5 \right)}}{{13}} = \dfrac{{26}}{{13}}$
Cancel out common factors from numerator and denominator,
$\Rightarrow$$\dfrac{{f\left( 5 \right)}}{{13}} = 2$.
Hence, the value of $\dfrac{{f\left( 5 \right)}}{{13}}$ is 2.
Note: The students might make mistake if they are unaware of the solution to the equation $f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = f\left( x \right) + f\left( {\dfrac{1}{x}} \right)$.
A function is a relation which describes that there should be only one output for each input. We can say that a special kind of relation (a set of ordered pairs) which follows a rule i.e every X-value should be associated with only one y-value is called a function.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

