
If \[f\left( x \right) = {\log _e}\left( {\dfrac{{1 - x}}{{1 + x}}} \right)\],\[\left| x \right| < 1\], then\[f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\]is equal to:
A.\[2f\left( x \right)\]
B.\[2f\left( {{x^2}} \right)\]
C.\[{\left( {f\left( x \right)} \right)^2}\]
D.\[{\left( {f\left( x \right)} \right)^3}\]
Answer
474.9k+ views
Hint: Here we will find the value of \[f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\] by substituting the value of \[x\] as \[\dfrac{{2x}}{{1 + {x^2}}}\] in the function \[f\left( x \right)\]. Then we will simplify the equation to get the answer in terms of the main function that is \[f\left( x \right)\].
Complete step-by-step answer:
Given function is \[f\left( x \right) = {\log _e}\left( {\dfrac{{1 - x}}{{1 + x}}} \right)\]……………….\[\left( 1 \right)\]
We will find the value of \[f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\]. Therefore, substituting the value of \[x\] as \[\dfrac{{2x}}{{1 + {x^2}}}\] in the equation\[\left( 1 \right)\], we get
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = {\log _e}\left( {\dfrac{{1 - \dfrac{{2x}}{{1 + {x^2}}}}}{{1 + \dfrac{{2x}}{{1 + {x^2}}}}}} \right)\]
Now, we will solve and simplify the above equation. So, by taking \[1 + {x^2}\] common in both the numerator and denominator, we get
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = {\log _e}\left( {\dfrac{{\dfrac{{1 + {x^2} - 2x}}{{1 + {x^2}}}}}{{\dfrac{{1 + {x^2} + 2x}}{{1 + {x^2}}}}}} \right) = {\log _e}\left( {\dfrac{{1 + {x^2} - 2x}}{{1 + {x^2} + 2x}}} \right)\]
Now, we can clearly see that the numerator and the denominator is the perfect square of \[1 - x\] and \[1 + x\] respectively. So, we get
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = {\log _e}\left( {\dfrac{{{{\left( {1 - x} \right)}^2}}}{{{{\left( {1 + x} \right)}^2}}}} \right) = {\log _e}{\left( {\dfrac{{1 - x}}{{1 + x}}} \right)^2}\]
Now as we know this the property of the logarithmic function that \[\log {a^b} = b\log a\].
Applying the property of logarithmic function, we get
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = 2{\log _e}\left( {\dfrac{{1 - x}}{{1 + x}}} \right)\]
Now from the equation \[\left( 1 \right)\] we know that \[{\log _e}\left( {\dfrac{{1 - x}}{{1 + x}}} \right)\] is equal to \[f\left( x \right)\]. Therefore, we can write
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = 2f\left( x \right)\]
Hence, \[f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\] is equal to \[2f\left( x \right)\].
So, option A is the correct option.
Note: Here, it is important to rewrite the function whose value is to be found out in such a way that the function changes in terms of the given value. So, that we can easily substitute the values and find the answer. Also to solve this question we need to keep in mind the basic logarithmic properties. Few properties of the logarithmic function is:
(1)\[\log a + \log b = \log ab\]
(2)\[\log a - \log b = \log \dfrac{a}{b}\]
(3)\[\log {a^b} = b\log a\]
Complete step-by-step answer:
Given function is \[f\left( x \right) = {\log _e}\left( {\dfrac{{1 - x}}{{1 + x}}} \right)\]……………….\[\left( 1 \right)\]
We will find the value of \[f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\]. Therefore, substituting the value of \[x\] as \[\dfrac{{2x}}{{1 + {x^2}}}\] in the equation\[\left( 1 \right)\], we get
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = {\log _e}\left( {\dfrac{{1 - \dfrac{{2x}}{{1 + {x^2}}}}}{{1 + \dfrac{{2x}}{{1 + {x^2}}}}}} \right)\]
Now, we will solve and simplify the above equation. So, by taking \[1 + {x^2}\] common in both the numerator and denominator, we get
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = {\log _e}\left( {\dfrac{{\dfrac{{1 + {x^2} - 2x}}{{1 + {x^2}}}}}{{\dfrac{{1 + {x^2} + 2x}}{{1 + {x^2}}}}}} \right) = {\log _e}\left( {\dfrac{{1 + {x^2} - 2x}}{{1 + {x^2} + 2x}}} \right)\]
Now, we can clearly see that the numerator and the denominator is the perfect square of \[1 - x\] and \[1 + x\] respectively. So, we get
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = {\log _e}\left( {\dfrac{{{{\left( {1 - x} \right)}^2}}}{{{{\left( {1 + x} \right)}^2}}}} \right) = {\log _e}{\left( {\dfrac{{1 - x}}{{1 + x}}} \right)^2}\]
Now as we know this the property of the logarithmic function that \[\log {a^b} = b\log a\].
Applying the property of logarithmic function, we get
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = 2{\log _e}\left( {\dfrac{{1 - x}}{{1 + x}}} \right)\]
Now from the equation \[\left( 1 \right)\] we know that \[{\log _e}\left( {\dfrac{{1 - x}}{{1 + x}}} \right)\] is equal to \[f\left( x \right)\]. Therefore, we can write
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = 2f\left( x \right)\]
Hence, \[f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\] is equal to \[2f\left( x \right)\].
So, option A is the correct option.
Note: Here, it is important to rewrite the function whose value is to be found out in such a way that the function changes in terms of the given value. So, that we can easily substitute the values and find the answer. Also to solve this question we need to keep in mind the basic logarithmic properties. Few properties of the logarithmic function is:
(1)\[\log a + \log b = \log ab\]
(2)\[\log a - \log b = \log \dfrac{a}{b}\]
(3)\[\log {a^b} = b\log a\]
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

Number of valence electrons in Chlorine ion are a 16 class 11 chemistry CBSE

What is the modal class for the following table given class 11 maths CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
