If $f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^n} - {x^{ - n}}}}{{{x^n} + {x^{ - n}}}},x > 1$ then \[\int {\dfrac{{xf\left( x \right)\ln \left( {x + \sqrt {\left( {1 + {x^2}} \right)} } \right)}}{{\sqrt {\left( {1 + {x^2}} \right)} }}dx} \] is
A) $\ln \left( {x + \sqrt {\left( {1 + {x^2}} \right)} } \right) - x + c$
B) $\dfrac{1}{2}\left\{ {{x^2}\ln \left( {x + \sqrt {\left( {1 + {x^2}} \right)} } \right) - {x^2}} \right\} + c$
C) $x\ln \left( {x + \sqrt {\left( {1 + {x^2}} \right)} } \right) - \ln \left( {x + \sqrt {\left( {1 + {x^2}} \right)} } \right) + c$
D) None of these
Answer
Verified
435.6k+ views
Hint: We have given a function \[f\left( x \right)\] and we have to solve the integration. Firstly, we have to find the value of $f\left( x \right)$. The function $f\left( x \right)$ is $\dfrac{\infty }{\infty }$ form, so we cannot put the limit in it. We have to simplify it. Once we get the value of $f\left( x \right)$, we can solve the integration. In integration, firstly we will simplify the integral function by putting it equal to another variable. Then, we apply an integration formula to solve it.
Complete step-by-step solution:
We have given that $f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^n} - {x^{ - n}}}}{{{x^n} + {x^{ - n}}}},x > 1$ and
We have to calculate value of $\int {\dfrac{{xf\left( x \right)\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {\left( {1 + {x^2}} \right)} }}} $
Now $f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^n} - {x^{ - n}}}}{{{x^n} + {x^{ - n}}}},x > 0$
It is $\dfrac{\infty }{\infty }$ form as $x > 0$
$ \Rightarrow \,\,f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^n} - \dfrac{1}{{{x^n}}}}}{{{x^n} + \dfrac{1}{{{x^n}}}}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\dfrac{{{x^{2n}} - 1}}{{{x^n}}}}}{{\dfrac{{{x^{2n}} + 1}}{{{x^n}}}}}$
The bottom of both numerator and denominator are hence cancel it, then
$ \Rightarrow \,\,f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^{2n}} - 1}}{{{x^{2n}} + 1}}$
It is again $\dfrac{\infty }{\infty }$ form
Now, Take \[{x^{2n}}\] as common in both numerator and denominator
$ \Rightarrow \,\,f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^{2n}}\left( {1 - \dfrac{1}{{{x^{2n}}}}} \right)}}{{{x^{2n}}\left( {1 + \dfrac{1}{{{x^{2n}}}}} \right)}}$
$ \Rightarrow \,\,\,f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left( {1 - \dfrac{1}{{{x^{2n}}}}} \right)}}{{\left( {1 + \dfrac{1}{{{x^{2n}}}}} \right)}} = \dfrac{{1 - \dfrac{1}{\infty }}}{{1 + \dfrac{1}{\infty }}} = \dfrac{{1 - 0}}{{1 + 0}} = 1$--------(1)
Now let consider
$ \Rightarrow \,\,\,\,{\rm I} = \int {\dfrac{{x \cdot f\left( x \right)\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {\left( {1 + {x^2}} \right)} }}dx} $
From equation (1) the value of \[f(x) = 1\], then
$ \Rightarrow \,\,\,\,{\rm I} = \int {\dfrac{{x \cdot 1\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {\left( {1 + {x^2}} \right)} }}dx} $------------(2)
Putting $x + \sqrt {1 + {x^2}} = t$-----------(a)
Differentiating both sides, we get
\[ \Rightarrow \,\,\,\left( {1 + \dfrac{1}{2}\dfrac{{2x}}{{\sqrt {1 + {x^2}} }}} \right)dx = dt\]
On simplification, we get
\[ \Rightarrow \,\,\,\left( {1 + \dfrac{x}{{\sqrt {1 + {x^2}} }}} \right)dx = dt\]
$ \Rightarrow \dfrac{{\sqrt {1 + {x^2}} + x}}{{\sqrt {1 + {x^2}} }}dx = dt$
$ \Rightarrow $Now value of $\sqrt {1 + {x^2}} + x = t$ so, we have
$ \Rightarrow \,\,\dfrac{t}{{\sqrt {1 + {x^2}} }}dx = dt$
$ \Rightarrow \,\,\dfrac{{dx}}{{\sqrt {1 + {x^2}} }} = \dfrac{1}{t}dt$----------(b)
Again consider,
$ \Rightarrow \,\,x + \sqrt {1 + {x^2}} = t$
Subtract x on both side, then
$ \Rightarrow \,\,x + \sqrt {1 + {x^2}} - x = t - x$
$ \Rightarrow \sqrt {1 + {x^2}} = t - x$
Squaring both sides, we get
$ \Rightarrow 1 + {x^2} = {\left( {t - x} \right)^2}$
Apply the formula \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\] on RHS, then
\[ \Rightarrow 1 + {x^2} = {t^2} + {x^2} - 2tx\]
Subtract ${x^2}$ on both side
$ \Rightarrow 1 + {x^2} - {x^2} = {t^2} + {x^2} - 2tx - {x^2}$
On simplification, we get
$ \Rightarrow \,\,\,1 = {t^2} - 2tx$
or
$ \Rightarrow 2tx = {t^2} - 1$
Divide both side by 2t
$ \Rightarrow x = \dfrac{{{t^2} - 1}}{{2t}}$---------(c)
Now substitute (a), (b) and (c) values in (2), then
$ \Rightarrow \,\,\,I = \int {\dfrac{{{t^2} - 1}}{{2t}}\ln \left( t \right)\dfrac{{dt}}{t}} $
$ \Rightarrow \,\,\,\,I = \dfrac{1}{2}\int {\dfrac{{{t^2} - 1}}{{{t^2}}}\ln \left( t \right)dt} $
$ \Rightarrow \,\,\,I = \dfrac{1}{2}\int {\left( {1 - \dfrac{1}{{{t^2}}}} \right)\ln \left( t \right)dt} $
Apply integration separately
$ \Rightarrow \,\,I = \dfrac{1}{2}\int {\ln \left( t \right)dt - \dfrac{1}{2}\int {\dfrac{{\ln \left( t \right)}}{{{t^2}}}dt} } $
In $\ln \left( t \right)$apply integration of product
$ \Rightarrow \,\,\,I = \dfrac{1}{2}\left[ {t\left( {\ln \left( t \right) - 1} \right)} \right] - \dfrac{1}{2}\left[ { - \dfrac{1}{t}\ln t - \dfrac{1}{t}} \right] + c$
$ \Rightarrow \,\,\,I = \dfrac{{t\ln \left( t \right)}}{2} - \dfrac{t}{2} + \dfrac{{\ln \left( t \right)}}{{2t}} + \dfrac{1}{{2t}} + c$
Substitute the value of t
${\rm I} = \dfrac{{x + \sqrt {{x^2} + 1} \ln \left( {x + \sqrt {{x^2} + 1} } \right)}}{2} + \dfrac{{x + \sqrt {{x^2} + 1} }}{2} + \dfrac{{\ln \left( {x + \sqrt {{x^2} + 1} } \right)}}{{2\left( {x + \sqrt {{x^2} + 1} } \right)}} + \dfrac{1}{{2\left( {x + \sqrt {{x^2} + 1} } \right)}} + C$
Hence the correct answer is option ‘D’.
Note: Integration is a way of adding slices to find the whole integration can be used to find are, volume and central points. It is used to find many useful quantities.
i) Limit of a function: The limit of a function is a fundamental concept in calculus and analysis concerning the behavior of the function near a particular input.
ii) Differentiation: The derivative of a function of a real variable measures the sensitivity to the change of a function with respect to change in argument.
Complete step-by-step solution:
We have given that $f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^n} - {x^{ - n}}}}{{{x^n} + {x^{ - n}}}},x > 1$ and
We have to calculate value of $\int {\dfrac{{xf\left( x \right)\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {\left( {1 + {x^2}} \right)} }}} $
Now $f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^n} - {x^{ - n}}}}{{{x^n} + {x^{ - n}}}},x > 0$
It is $\dfrac{\infty }{\infty }$ form as $x > 0$
$ \Rightarrow \,\,f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^n} - \dfrac{1}{{{x^n}}}}}{{{x^n} + \dfrac{1}{{{x^n}}}}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\dfrac{{{x^{2n}} - 1}}{{{x^n}}}}}{{\dfrac{{{x^{2n}} + 1}}{{{x^n}}}}}$
The bottom of both numerator and denominator are hence cancel it, then
$ \Rightarrow \,\,f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^{2n}} - 1}}{{{x^{2n}} + 1}}$
It is again $\dfrac{\infty }{\infty }$ form
Now, Take \[{x^{2n}}\] as common in both numerator and denominator
$ \Rightarrow \,\,f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^{2n}}\left( {1 - \dfrac{1}{{{x^{2n}}}}} \right)}}{{{x^{2n}}\left( {1 + \dfrac{1}{{{x^{2n}}}}} \right)}}$
$ \Rightarrow \,\,\,f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left( {1 - \dfrac{1}{{{x^{2n}}}}} \right)}}{{\left( {1 + \dfrac{1}{{{x^{2n}}}}} \right)}} = \dfrac{{1 - \dfrac{1}{\infty }}}{{1 + \dfrac{1}{\infty }}} = \dfrac{{1 - 0}}{{1 + 0}} = 1$--------(1)
Now let consider
$ \Rightarrow \,\,\,\,{\rm I} = \int {\dfrac{{x \cdot f\left( x \right)\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {\left( {1 + {x^2}} \right)} }}dx} $
From equation (1) the value of \[f(x) = 1\], then
$ \Rightarrow \,\,\,\,{\rm I} = \int {\dfrac{{x \cdot 1\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {\left( {1 + {x^2}} \right)} }}dx} $------------(2)
Putting $x + \sqrt {1 + {x^2}} = t$-----------(a)
Differentiating both sides, we get
\[ \Rightarrow \,\,\,\left( {1 + \dfrac{1}{2}\dfrac{{2x}}{{\sqrt {1 + {x^2}} }}} \right)dx = dt\]
On simplification, we get
\[ \Rightarrow \,\,\,\left( {1 + \dfrac{x}{{\sqrt {1 + {x^2}} }}} \right)dx = dt\]
$ \Rightarrow \dfrac{{\sqrt {1 + {x^2}} + x}}{{\sqrt {1 + {x^2}} }}dx = dt$
$ \Rightarrow $Now value of $\sqrt {1 + {x^2}} + x = t$ so, we have
$ \Rightarrow \,\,\dfrac{t}{{\sqrt {1 + {x^2}} }}dx = dt$
$ \Rightarrow \,\,\dfrac{{dx}}{{\sqrt {1 + {x^2}} }} = \dfrac{1}{t}dt$----------(b)
Again consider,
$ \Rightarrow \,\,x + \sqrt {1 + {x^2}} = t$
Subtract x on both side, then
$ \Rightarrow \,\,x + \sqrt {1 + {x^2}} - x = t - x$
$ \Rightarrow \sqrt {1 + {x^2}} = t - x$
Squaring both sides, we get
$ \Rightarrow 1 + {x^2} = {\left( {t - x} \right)^2}$
Apply the formula \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\] on RHS, then
\[ \Rightarrow 1 + {x^2} = {t^2} + {x^2} - 2tx\]
Subtract ${x^2}$ on both side
$ \Rightarrow 1 + {x^2} - {x^2} = {t^2} + {x^2} - 2tx - {x^2}$
On simplification, we get
$ \Rightarrow \,\,\,1 = {t^2} - 2tx$
or
$ \Rightarrow 2tx = {t^2} - 1$
Divide both side by 2t
$ \Rightarrow x = \dfrac{{{t^2} - 1}}{{2t}}$---------(c)
Now substitute (a), (b) and (c) values in (2), then
$ \Rightarrow \,\,\,I = \int {\dfrac{{{t^2} - 1}}{{2t}}\ln \left( t \right)\dfrac{{dt}}{t}} $
$ \Rightarrow \,\,\,\,I = \dfrac{1}{2}\int {\dfrac{{{t^2} - 1}}{{{t^2}}}\ln \left( t \right)dt} $
$ \Rightarrow \,\,\,I = \dfrac{1}{2}\int {\left( {1 - \dfrac{1}{{{t^2}}}} \right)\ln \left( t \right)dt} $
Apply integration separately
$ \Rightarrow \,\,I = \dfrac{1}{2}\int {\ln \left( t \right)dt - \dfrac{1}{2}\int {\dfrac{{\ln \left( t \right)}}{{{t^2}}}dt} } $
In $\ln \left( t \right)$apply integration of product
$ \Rightarrow \,\,\,I = \dfrac{1}{2}\left[ {t\left( {\ln \left( t \right) - 1} \right)} \right] - \dfrac{1}{2}\left[ { - \dfrac{1}{t}\ln t - \dfrac{1}{t}} \right] + c$
$ \Rightarrow \,\,\,I = \dfrac{{t\ln \left( t \right)}}{2} - \dfrac{t}{2} + \dfrac{{\ln \left( t \right)}}{{2t}} + \dfrac{1}{{2t}} + c$
Substitute the value of t
${\rm I} = \dfrac{{x + \sqrt {{x^2} + 1} \ln \left( {x + \sqrt {{x^2} + 1} } \right)}}{2} + \dfrac{{x + \sqrt {{x^2} + 1} }}{2} + \dfrac{{\ln \left( {x + \sqrt {{x^2} + 1} } \right)}}{{2\left( {x + \sqrt {{x^2} + 1} } \right)}} + \dfrac{1}{{2\left( {x + \sqrt {{x^2} + 1} } \right)}} + C$
Hence the correct answer is option ‘D’.
Note: Integration is a way of adding slices to find the whole integration can be used to find are, volume and central points. It is used to find many useful quantities.
i) Limit of a function: The limit of a function is a fundamental concept in calculus and analysis concerning the behavior of the function near a particular input.
ii) Differentiation: The derivative of a function of a real variable measures the sensitivity to the change of a function with respect to change in argument.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE