
If $f\left( x \right)=\left| \begin{matrix}
1 & x & x+1 \\
2x & x\left( x-1 \right) & x\left( x+1 \right) \\
3x\left( x-1 \right) & x\left( x-1 \right)\left( x-2 \right) & x\left( x-1 \right)\left( x+1 \right) \\
\end{matrix} \right|$, then find the value of $f\left( 50 \right)+f\left( 51 \right)+.....+f\left( 99 \right)$.
Answer
515.1k+ views
Hint: We first use the row and column operations to simplify the determinant value. We take $x$ common from the second row and $x\left( x-1 \right)$ from the third row. Then we expand the determinant to find the final value.
Complete step by step solution:
We need to find the simplified value of $f\left( x \right)=\left| \begin{matrix}
1 & x & x+1 \\
2x & x\left( x-1 \right) & x\left( x+1 \right) \\
3x\left( x-1 \right) & x\left( x-1 \right)\left( x-2 \right) & x\left( x-1 \right)\left( x+1 \right) \\
\end{matrix} \right|$.
We can apply row operations on the determinant value without changing the initial form.
There are certain operations which we can apply for the problems. We can switch two rows or columns which causes the determinant to switch sign. We can add a multiple of one row to another which causes the determinant to remain the same. We can multiply a row as a constant result in the determinant scaling by that constant.
First, we take $x$ common from the second row and $x\left( x-1 \right)$ from the third row.
We get $f\left( x \right)={{x}^{2}}\left( x-1 \right)\left| \begin{matrix}
1 & x & \left( x+1 \right) \\
2 & \left( x-1 \right) & \left( x+1 \right) \\
3 & \left( x-2 \right) & \left( x+1 \right) \\
\end{matrix} \right|$
So, we take the form of ${{R}_{2}}^{'}={{R}_{2}}-{{R}_{1}}$.
We get $f\left( x \right)={{x}^{2}}\left( x-1 \right)\left| \begin{matrix}
1 & x & \left( x+1 \right) \\
2 & \left( x-1 \right) & \left( x+1 \right) \\
3 & \left( x-2 \right) & \left( x+1 \right) \\
\end{matrix} \right|={{x}^{2}}\left( x-1 \right)\left| \begin{matrix}
1 & x & \left( x+1 \right) \\
1 & -1 & 0 \\
3 & \left( x-2 \right) & \left( x+1 \right) \\
\end{matrix} \right|$.
Similarly, we take the form of ${{R}_{3}}^{'}={{R}_{3}}-{{R}_{1}}$.
We get $f\left( x \right)={{x}^{2}}\left( x-1 \right)\left| \begin{matrix}
1 & x & \left( x+1 \right) \\
1 & -1 & 0 \\
3 & \left( x-2 \right) & \left( x+1 \right) \\
\end{matrix} \right|={{x}^{2}}\left( x-1 \right)\left| \begin{matrix}
1 & x & \left( x+1 \right) \\
1 & -1 & 0 \\
2 & -2 & 0 \\
\end{matrix} \right|$.
Now we expand the determinant value through the third column.
So, $f\left( x \right)={{x}^{2}}\left( x-1 \right)\left| \begin{matrix}
1 & x & \left( x+1 \right) \\
1 & -1 & 0 \\
2 & -2 & 0 \\
\end{matrix} \right|={{x}^{2}}\left( x-1 \right)\left( x+1 \right)\left[ -2+2 \right]=0$.
We get the value of $f\left( x \right)=0$. We can put the values of $a=50,51,....99$ to get $f\left( a \right)=0$ as the function is $x$ independent.
Therefore, $f\left( 50 \right)+f\left( 51 \right)+.....+f\left( 99 \right)=0$.
Note: The key point is that row operations don't change whether or not a determinant is 0; at most they change the determinant by a non-zero factor or change its sign. We can use row operations to reduce the matrix to reduced row-echelon form.
Complete step by step solution:
We need to find the simplified value of $f\left( x \right)=\left| \begin{matrix}
1 & x & x+1 \\
2x & x\left( x-1 \right) & x\left( x+1 \right) \\
3x\left( x-1 \right) & x\left( x-1 \right)\left( x-2 \right) & x\left( x-1 \right)\left( x+1 \right) \\
\end{matrix} \right|$.
We can apply row operations on the determinant value without changing the initial form.
There are certain operations which we can apply for the problems. We can switch two rows or columns which causes the determinant to switch sign. We can add a multiple of one row to another which causes the determinant to remain the same. We can multiply a row as a constant result in the determinant scaling by that constant.
First, we take $x$ common from the second row and $x\left( x-1 \right)$ from the third row.
We get $f\left( x \right)={{x}^{2}}\left( x-1 \right)\left| \begin{matrix}
1 & x & \left( x+1 \right) \\
2 & \left( x-1 \right) & \left( x+1 \right) \\
3 & \left( x-2 \right) & \left( x+1 \right) \\
\end{matrix} \right|$
So, we take the form of ${{R}_{2}}^{'}={{R}_{2}}-{{R}_{1}}$.
We get $f\left( x \right)={{x}^{2}}\left( x-1 \right)\left| \begin{matrix}
1 & x & \left( x+1 \right) \\
2 & \left( x-1 \right) & \left( x+1 \right) \\
3 & \left( x-2 \right) & \left( x+1 \right) \\
\end{matrix} \right|={{x}^{2}}\left( x-1 \right)\left| \begin{matrix}
1 & x & \left( x+1 \right) \\
1 & -1 & 0 \\
3 & \left( x-2 \right) & \left( x+1 \right) \\
\end{matrix} \right|$.
Similarly, we take the form of ${{R}_{3}}^{'}={{R}_{3}}-{{R}_{1}}$.
We get $f\left( x \right)={{x}^{2}}\left( x-1 \right)\left| \begin{matrix}
1 & x & \left( x+1 \right) \\
1 & -1 & 0 \\
3 & \left( x-2 \right) & \left( x+1 \right) \\
\end{matrix} \right|={{x}^{2}}\left( x-1 \right)\left| \begin{matrix}
1 & x & \left( x+1 \right) \\
1 & -1 & 0 \\
2 & -2 & 0 \\
\end{matrix} \right|$.
Now we expand the determinant value through the third column.
So, $f\left( x \right)={{x}^{2}}\left( x-1 \right)\left| \begin{matrix}
1 & x & \left( x+1 \right) \\
1 & -1 & 0 \\
2 & -2 & 0 \\
\end{matrix} \right|={{x}^{2}}\left( x-1 \right)\left( x+1 \right)\left[ -2+2 \right]=0$.
We get the value of $f\left( x \right)=0$. We can put the values of $a=50,51,....99$ to get $f\left( a \right)=0$ as the function is $x$ independent.
Therefore, $f\left( 50 \right)+f\left( 51 \right)+.....+f\left( 99 \right)=0$.
Note: The key point is that row operations don't change whether or not a determinant is 0; at most they change the determinant by a non-zero factor or change its sign. We can use row operations to reduce the matrix to reduced row-echelon form.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

