If for non-zero X, $ af(x) + bf\left( {\dfrac{1}{x}} \right) = \dfrac{1}{x} - 5, $ where $ a \ne b, $ then $ f(x). $
Answer
Verified
455.4k+ views
Hint: Take the given expression, as the given function is with respect to “x” then create the expression in the form of $ \dfrac{1}{x} $ and then simplify both the equation finding the correlation between the two for the resultant answer.
Complete step-by-step answer:
Take the given expression –
$ af(x) + bf\left( {\dfrac{1}{x}} \right) = \dfrac{1}{x} - 5 $ .... (A)
Replace $ x $ by $ \left( {\dfrac{1}{x}} \right) $ in the above equation –
$ \Rightarrow af\left( {\dfrac{1}{x}} \right) + bf\left( x \right) = x - 5 $ .... (B)
Multiply Equation (A) with “a” on both the sides of the equation –
$ a\left[ {af(x) + bf\left( {\dfrac{1}{x}} \right)} \right] = a\left[ {\dfrac{1}{x} - 5} \right] $
Simplify the above equation –
$ \Rightarrow \left[ {{a^2}f(x) + abf\left( {\dfrac{1}{x}} \right)} \right] = \left[ {\dfrac{a}{x} - 5a} \right] $ ..... (C)
Multiply Equation (B) with “b” on both the sides of the equation –
$ \Rightarrow b\left[ {af\left( {\dfrac{1}{x}} \right) + bf\left( x \right)} \right] = b\left[ {x - 5} \right] $
Simplify the above equation –
$ \Rightarrow \left[ {abf\left( {\dfrac{1}{x}} \right) + {b^2}f\left( x \right)} \right] = \left[ {bx - 5b} \right] $ ..... (D)
Subtract equation (D) from the equation (C)
$ \Rightarrow \left[ {{a^2}f(x) + abf\left( {\dfrac{1}{x}} \right)} \right] - \left[ {abf\left( {\dfrac{1}{x}} \right) + {b^2}f\left( x \right)} \right] = \left[ {\dfrac{a}{x} - 5a} \right] - \left[ {bx - 5b} \right] $
When you open the brackets and if there is a negative sign outside it, then the sign of all the terms inside the bracket changes. Positive term becomes negative and negative term becomes positive.
$ \Rightarrow {a^2}f(x) + abf\left( {\dfrac{1}{x}} \right) - abf\left( {\dfrac{1}{x}} \right) - {b^2}f\left( x \right) = \dfrac{a}{x} - 5a - bx + 5b $
Make pair of like terms in the above equation –
$ \Rightarrow \underline {{a^2}f(x) - {b^2}f\left( x \right)} + \underline {abf\left( {\dfrac{1}{x}} \right) - abf\left( {\dfrac{1}{x}} \right)} = \dfrac{a}{x} - 5a - bx + 5b $
Like terms with equal values and opposite sign cancel each other.
$ \Rightarrow \left( {{a^2} - {b^2}} \right)f\left( x \right) = \dfrac{a}{x} - 5a - bx + 5b $
The above equation can be written as –
$ \Rightarrow \left( {{a^2} - {b^2}} \right)f\left( x \right) = \left[ {\dfrac{a}{x} - 5a - bx + 5b} \right] $
When the term multiplicative on one side is moved to the opposite side then it goes to the denominator on the opposite side.
$ \Rightarrow f\left( x \right) = \dfrac{{\left[ {\dfrac{a}{x} - 5a - bx + 5b} \right]}}{{\left( {{a^2} - {b^2}} \right)}} $
This is the required solution.
So, the correct answer is “ $ \Rightarrow f\left( x \right) = \dfrac{{\left[ {\dfrac{a}{x} - 5a - bx + 5b} \right]}}{{\left( {{a^2} - {b^2}} \right)}} $ ”.
Note: Be very careful while simplifying the terms. When you open the brackets and there is a negative sign outside the bracket then the sign of the terms inside the bracket will be changed. Positive terms will become negative and negative terms become positive. Also, remember when there is a positive sign outside the bracket then the sign of the terms inside the bracket do not change.
Complete step-by-step answer:
Take the given expression –
$ af(x) + bf\left( {\dfrac{1}{x}} \right) = \dfrac{1}{x} - 5 $ .... (A)
Replace $ x $ by $ \left( {\dfrac{1}{x}} \right) $ in the above equation –
$ \Rightarrow af\left( {\dfrac{1}{x}} \right) + bf\left( x \right) = x - 5 $ .... (B)
Multiply Equation (A) with “a” on both the sides of the equation –
$ a\left[ {af(x) + bf\left( {\dfrac{1}{x}} \right)} \right] = a\left[ {\dfrac{1}{x} - 5} \right] $
Simplify the above equation –
$ \Rightarrow \left[ {{a^2}f(x) + abf\left( {\dfrac{1}{x}} \right)} \right] = \left[ {\dfrac{a}{x} - 5a} \right] $ ..... (C)
Multiply Equation (B) with “b” on both the sides of the equation –
$ \Rightarrow b\left[ {af\left( {\dfrac{1}{x}} \right) + bf\left( x \right)} \right] = b\left[ {x - 5} \right] $
Simplify the above equation –
$ \Rightarrow \left[ {abf\left( {\dfrac{1}{x}} \right) + {b^2}f\left( x \right)} \right] = \left[ {bx - 5b} \right] $ ..... (D)
Subtract equation (D) from the equation (C)
$ \Rightarrow \left[ {{a^2}f(x) + abf\left( {\dfrac{1}{x}} \right)} \right] - \left[ {abf\left( {\dfrac{1}{x}} \right) + {b^2}f\left( x \right)} \right] = \left[ {\dfrac{a}{x} - 5a} \right] - \left[ {bx - 5b} \right] $
When you open the brackets and if there is a negative sign outside it, then the sign of all the terms inside the bracket changes. Positive term becomes negative and negative term becomes positive.
$ \Rightarrow {a^2}f(x) + abf\left( {\dfrac{1}{x}} \right) - abf\left( {\dfrac{1}{x}} \right) - {b^2}f\left( x \right) = \dfrac{a}{x} - 5a - bx + 5b $
Make pair of like terms in the above equation –
$ \Rightarrow \underline {{a^2}f(x) - {b^2}f\left( x \right)} + \underline {abf\left( {\dfrac{1}{x}} \right) - abf\left( {\dfrac{1}{x}} \right)} = \dfrac{a}{x} - 5a - bx + 5b $
Like terms with equal values and opposite sign cancel each other.
$ \Rightarrow \left( {{a^2} - {b^2}} \right)f\left( x \right) = \dfrac{a}{x} - 5a - bx + 5b $
The above equation can be written as –
$ \Rightarrow \left( {{a^2} - {b^2}} \right)f\left( x \right) = \left[ {\dfrac{a}{x} - 5a - bx + 5b} \right] $
When the term multiplicative on one side is moved to the opposite side then it goes to the denominator on the opposite side.
$ \Rightarrow f\left( x \right) = \dfrac{{\left[ {\dfrac{a}{x} - 5a - bx + 5b} \right]}}{{\left( {{a^2} - {b^2}} \right)}} $
This is the required solution.
So, the correct answer is “ $ \Rightarrow f\left( x \right) = \dfrac{{\left[ {\dfrac{a}{x} - 5a - bx + 5b} \right]}}{{\left( {{a^2} - {b^2}} \right)}} $ ”.
Note: Be very careful while simplifying the terms. When you open the brackets and there is a negative sign outside the bracket then the sign of the terms inside the bracket will be changed. Positive terms will become negative and negative terms become positive. Also, remember when there is a positive sign outside the bracket then the sign of the terms inside the bracket do not change.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE