If $f(x) = \left( {\dfrac{{\sin 3x}}{{\sin x}}} \right),x \ne n\pi ,$ then the range of values of $f(x)$ for real values of $x$ is
(a)$[1 - 3)$
(b)$( - \infty , - 1]$
(c)$(3, + \infty )$
(d)$[ - 1,3]$
Answer
Verified
442.8k+ views
Hint:As we know that the above given question is related to trigonometric expression, sine and cosine are trigonometric ratios. Here we have to find the value of $f(x)$, so first of all we have to solve and simplify the value. We can convert the equation into basic trigonometric equations by applying the trigonometric identities.
Complete step by step solution:
As per the given question we have to solve the expression $f(x) = \dfrac{{\sin 3x}}{{\sin x}}$. We know that a trigonometric identity for $\sin 3x$ which is $3\sin x - 4{\sin ^3}x$, now by substituting this value we will expand and we get, $f(x) = \dfrac{{3\sin x - 4{{\sin }^3}x}}{{\sin x}}$. We can take the common $\sin x$ out and it gives,
$\dfrac{{\sin x(3 - 4{{\sin }^2}x)}}{{\sin x}} = 3 - 4{\sin ^2}x$. Now let us assume $3 - 4{\sin ^2}x = y$, so we get: ${\sin ^2}x = \dfrac{{3 - y}}{4}$.
Since we can say that $0 \leqslant \dfrac{{3 - y}}{4} \leqslant 1$. Now solving this by inequality :
$ = 0 \leqslant 3 - y \leqslant 4 \Rightarrow - 3 \leqslant - y \leqslant 1$.
Now we can interchange the values but by keeping the signs not changed, $ - 1 \leqslant y \leqslant 3$.
So we can write it as $y \in [ - 1,3]$.
Hence the correct option is (d) $[ - 1,3]$.
Note: Before solving this kind of question we should have the proper knowledge of all trigonometric ratios, identities and their formulas. To solve this trigonometric expression we should also have the proper knowledge of the inequality, and then we should solve it by avoiding mistakes and taking care of positive and negative signs.
Complete step by step solution:
As per the given question we have to solve the expression $f(x) = \dfrac{{\sin 3x}}{{\sin x}}$. We know that a trigonometric identity for $\sin 3x$ which is $3\sin x - 4{\sin ^3}x$, now by substituting this value we will expand and we get, $f(x) = \dfrac{{3\sin x - 4{{\sin }^3}x}}{{\sin x}}$. We can take the common $\sin x$ out and it gives,
$\dfrac{{\sin x(3 - 4{{\sin }^2}x)}}{{\sin x}} = 3 - 4{\sin ^2}x$. Now let us assume $3 - 4{\sin ^2}x = y$, so we get: ${\sin ^2}x = \dfrac{{3 - y}}{4}$.
Since we can say that $0 \leqslant \dfrac{{3 - y}}{4} \leqslant 1$. Now solving this by inequality :
$ = 0 \leqslant 3 - y \leqslant 4 \Rightarrow - 3 \leqslant - y \leqslant 1$.
Now we can interchange the values but by keeping the signs not changed, $ - 1 \leqslant y \leqslant 3$.
So we can write it as $y \in [ - 1,3]$.
Hence the correct option is (d) $[ - 1,3]$.
Note: Before solving this kind of question we should have the proper knowledge of all trigonometric ratios, identities and their formulas. To solve this trigonometric expression we should also have the proper knowledge of the inequality, and then we should solve it by avoiding mistakes and taking care of positive and negative signs.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE