If G be the G.M. of the product of K, Set of observations with G.M.’S $ {{G}_{1}},{{G}_{2}},{{G}_{3}},....,{{G}_{K}} $
Respectively, then G equals.
A) $ \log {{G}_{1}}+\log {{G}_{2}}+\log {{G}_{3}}+...+\log {{G}_{k}} $
B) $ {{G}_{1}}{{G}_{2}}{{G}_{3}}...{{G}_{k}} $
C) $ \log {{G}_{1}}.\log {{G}_{2}}.\log {{G}_{3}}...\log {{G}_{k}} $
D) $ k\log \left( {{G}_{1}}.{{G}_{2}}.{{G}_{3}}...{{G}_{k}} \right) $
Answer
Verified
465.9k+ views
Hint: We will assume $ k $ variables and then find the geometric mean of the variables. For that equation apply logarithmic both sides and use the formula $ \log {{a}^{b}}=b\log a $ and then substitute the product of the $ k $ variables. Now use the formula $ \log \left( ab \right)=\log a+\log b $ to get the result.
Complete step by step answer:
If $ {{x}_{1}},{{x}_{2}},{{x}_{3}},...{{x}_{k}} $ be the $ k $ variables and their product is denoted by $ x={{x}_{1}}.{{x}_{2}}.{{x}_{3}}...{{x}_{k}} $
The geometric mean of the $ k $ variables is $ G={{\left( x \right)}^{\dfrac{1}{k}}} $
Take $ \log $ equation on both sides we have
$\Rightarrow$ $ \log G=\log {{\left( x \right)}^{\dfrac{1}{k}}} $
Using the formula $ \log {{a}^{b}}=b\log a $ in the above equation, then
$\Rightarrow$ $ \log G=\dfrac{1}{k}\log \left( x \right) $
Substitute $ x={{x}_{1}}.{{x}_{2}}.{{x}_{3}}...{{x}_{k}} $ in the above equation we get
$\Rightarrow$ $ \log G=\dfrac{1}{k}\log \left( {{x}_{1}}.{{x}_{2}}.{{x}_{3}}...{{x}_{k}} \right) $
Using the formula $ \log \left( ab \right)=\log a+\log b $ in the above equation, then
$ \begin{align}
& \log G=\dfrac{1}{k}\log {{x}_{1}}+\dfrac{1}{k}\log {{x}_{2}}+\dfrac{1}{k}\log {{x}_{3}}+...+\dfrac{1}{k}\log {{x}_{k}} \\
& \log G=\log {{G}_{1}}+\log {{G}_{2}}+\log {{G}_{3}}+...+\log {{G}_{k}} \\
& \log G=\log \left( {{G}_{1}}{{G}_{2}}{{G}_{3}}...{{G}_{k}} \right) \\
& G={{G}_{1}}{{G}_{2}}{{G}_{3}}...{{G}_{k}}
\end{align} $
Note:
Please note that we are using the proper logarithmic function at the right place in order to get the result. Some of other logarithmic functions are
$ \begin{align}
& \log a-\log b=\log \left( \frac{a}{b} \right) \\
& \log \left( \frac{1}{y} \right)=\log \left( {{y}^{-1}} \right)=-\log y \\
& {{\log }_{a}}a=1 \\
& {{\log }_{a}}\left( {{a}^{b}} \right)=b \\
& {{a}^{{{\log }_{a}}\left( b \right)}}=b
\end{align} $
Geometric Sequence: In a sequence if the numbers are obtained by multiplying a constant with the previous number (except first number) then that sequence is called a Geometric sequence.
We can write the general form of Geometric Sequence as $ a,ar,a{{r}^{2}},a{{r}^{3}},... $
Where $ a $ is the first term and
$ r $ is the constant value that is multiplied to the previous term.
Ex: $ 1,2,4,8,16,... $ . Here you can find that each term (except the first term) is obtained by multiplying a constant value $ \left( 2 \right) $ to the previous term. Here we can write $ a=1 $ and $ r=2 $
Geometric Mean: The geometric mean is the special type of average and calculated as $ {{n}^{th}} $ root of the product of $ n $ values. Mathematically geometric mean of the series $ a,{{a}_{1}},{{a}_{2}} $ is
$ G.M=\sqrt[3]{a\left( {{a}_{1}} \right)\left( {{a}_{2}} \right)} $
Complete step by step answer:
If $ {{x}_{1}},{{x}_{2}},{{x}_{3}},...{{x}_{k}} $ be the $ k $ variables and their product is denoted by $ x={{x}_{1}}.{{x}_{2}}.{{x}_{3}}...{{x}_{k}} $
The geometric mean of the $ k $ variables is $ G={{\left( x \right)}^{\dfrac{1}{k}}} $
Take $ \log $ equation on both sides we have
$\Rightarrow$ $ \log G=\log {{\left( x \right)}^{\dfrac{1}{k}}} $
Using the formula $ \log {{a}^{b}}=b\log a $ in the above equation, then
$\Rightarrow$ $ \log G=\dfrac{1}{k}\log \left( x \right) $
Substitute $ x={{x}_{1}}.{{x}_{2}}.{{x}_{3}}...{{x}_{k}} $ in the above equation we get
$\Rightarrow$ $ \log G=\dfrac{1}{k}\log \left( {{x}_{1}}.{{x}_{2}}.{{x}_{3}}...{{x}_{k}} \right) $
Using the formula $ \log \left( ab \right)=\log a+\log b $ in the above equation, then
$ \begin{align}
& \log G=\dfrac{1}{k}\log {{x}_{1}}+\dfrac{1}{k}\log {{x}_{2}}+\dfrac{1}{k}\log {{x}_{3}}+...+\dfrac{1}{k}\log {{x}_{k}} \\
& \log G=\log {{G}_{1}}+\log {{G}_{2}}+\log {{G}_{3}}+...+\log {{G}_{k}} \\
& \log G=\log \left( {{G}_{1}}{{G}_{2}}{{G}_{3}}...{{G}_{k}} \right) \\
& G={{G}_{1}}{{G}_{2}}{{G}_{3}}...{{G}_{k}}
\end{align} $
Note:
Please note that we are using the proper logarithmic function at the right place in order to get the result. Some of other logarithmic functions are
$ \begin{align}
& \log a-\log b=\log \left( \frac{a}{b} \right) \\
& \log \left( \frac{1}{y} \right)=\log \left( {{y}^{-1}} \right)=-\log y \\
& {{\log }_{a}}a=1 \\
& {{\log }_{a}}\left( {{a}^{b}} \right)=b \\
& {{a}^{{{\log }_{a}}\left( b \right)}}=b
\end{align} $
Geometric Sequence: In a sequence if the numbers are obtained by multiplying a constant with the previous number (except first number) then that sequence is called a Geometric sequence.
We can write the general form of Geometric Sequence as $ a,ar,a{{r}^{2}},a{{r}^{3}},... $
Where $ a $ is the first term and
$ r $ is the constant value that is multiplied to the previous term.
Ex: $ 1,2,4,8,16,... $ . Here you can find that each term (except the first term) is obtained by multiplying a constant value $ \left( 2 \right) $ to the previous term. Here we can write $ a=1 $ and $ r=2 $
Geometric Mean: The geometric mean is the special type of average and calculated as $ {{n}^{th}} $ root of the product of $ n $ values. Mathematically geometric mean of the series $ a,{{a}_{1}},{{a}_{2}} $ is
$ G.M=\sqrt[3]{a\left( {{a}_{1}} \right)\left( {{a}_{2}} \right)} $
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The capital of British India was transferred from Calcutta class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE