Answer
Verified
460.8k+ views
Hint: The distance of a point from an axis is given by the root of the sum of the squares of the coordinates of the points excluding the coordinate corresponding to the axis from which we are finding the distance. For example: the distance of a point P(a,b,c) from the x-axis is given by $\sqrt{{{b}^{2}}+{{c}^{2}}}$. So, use this to find the values of h and k separately and multiply the results to get the answer.
Complete step-by-step solution:
Let us start the solution to the above question by drawing a representative diagram of the situation given in the question.
The distance of a point from an axis is given by the root of the sum of the squares of the coordinates of the points excluding the coordinate corresponding to the axis from which we are finding the distance.
So, “h” is the distance from the x-axis, so we will add the squares of y-coordinate and z-coordinate of the point and take the root.
$h=\sqrt{{{2}^{2}}+{{3}^{2}}}=\sqrt{4+9}=\sqrt{13}$
Also, k is the distance from the z-axis, so we will add the squares of y-coordinate and x-coordinate of the point and take the root.
$k=\sqrt{{{2}^{2}}+{{1}^{2}}}=\sqrt{4+1}=\sqrt{5}$
Now, let us find the product of h and k, i.e., hk.
$hk=\sqrt{13}\times \sqrt{5}=\sqrt{13\times 5}=\sqrt{65}$
Hence, the answer to the above question is $\sqrt{65}$.
Note: If you are not aware of the point that the distance of a point from an axis is given by the root of the sum of the squares of the coordinates of the points excluding the coordinate corresponding to the axis from which we are finding the distance, you will have to consider a general point on the axis from which you are finding the distance, which will have two coordinates zero and one variable coordinate. Use the distance formula to get the distance in terms of variable coordinate and minimize it to get the perpendicular distance.
Complete step-by-step solution:
Let us start the solution to the above question by drawing a representative diagram of the situation given in the question.
The distance of a point from an axis is given by the root of the sum of the squares of the coordinates of the points excluding the coordinate corresponding to the axis from which we are finding the distance.
So, “h” is the distance from the x-axis, so we will add the squares of y-coordinate and z-coordinate of the point and take the root.
$h=\sqrt{{{2}^{2}}+{{3}^{2}}}=\sqrt{4+9}=\sqrt{13}$
Also, k is the distance from the z-axis, so we will add the squares of y-coordinate and x-coordinate of the point and take the root.
$k=\sqrt{{{2}^{2}}+{{1}^{2}}}=\sqrt{4+1}=\sqrt{5}$
Now, let us find the product of h and k, i.e., hk.
$hk=\sqrt{13}\times \sqrt{5}=\sqrt{13\times 5}=\sqrt{65}$
Hence, the answer to the above question is $\sqrt{65}$.
Note: If you are not aware of the point that the distance of a point from an axis is given by the root of the sum of the squares of the coordinates of the points excluding the coordinate corresponding to the axis from which we are finding the distance, you will have to consider a general point on the axis from which you are finding the distance, which will have two coordinates zero and one variable coordinate. Use the distance formula to get the distance in terms of variable coordinate and minimize it to get the perpendicular distance.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE