
If $\hat a$ and $\hat b$ are unit vectors inclined at an angle $\theta $, then prove that
$\tan \dfrac{\theta }{2} = \left| {\dfrac{{\hat a - \hat b}}{{\hat a + \hat b}}} \right|$
Answer
603.9k+ views
Hint: To prove this type of identity you have to start from $\left| {\vec A \pm \vec B} \right| = \sqrt {{{\left| {\vec A} \right|}^2} + {{\left| {\vec B} \right|}^2} \pm 2\vec A\vec B\cos \theta } $ here and it is given a and b are unit vectors so put A=B=1 and proceed further using trigonometric results.
Complete step-by-step answer:
Using the formula
$\left| {\vec A \pm \vec B} \right| = \sqrt {{{\left| {\vec A} \right|}^2} + {{\left| {\vec B} \right|}^2} \pm 2\vec A\vec B\cos \theta } $
Put A=B=1 because of unit vectors.
$\left| {\hat a + \hat b} \right| = \sqrt {1 + 1 + 2\cos \theta } = \sqrt {2\left( {1 + \cos \theta } \right)} = \sqrt {4{{\cos }^2}\dfrac{\theta }{2}} $ $\left( {\because \left( {1 + \cos \theta = 2{{\cos }^2}\dfrac{\theta }{2}} \right)} \right)$
$\left| {\hat a - \hat b} \right| = \sqrt {1 + 1 - 2\cos \theta } = \sqrt {2\left( {1 - \cos \theta } \right)} = \sqrt {4{{\sin }^2}\dfrac{\theta }{2}} $$\left( {\because \left( {1 + \sin \theta = 2{{\sin }^2}\dfrac{\theta }{2}} \right)} \right)$
So we have to find
$\dfrac{{\left| {\hat a - \hat b} \right|}}{{\left| {\hat a + \hat b} \right|}} = \dfrac{{\sqrt {4{{\sin }^2}\dfrac{\theta }{2}} }}{{\sqrt {4{{\cos }^2}\dfrac{\theta }{2}} }} = \tan \dfrac{\theta }{2}$
Hence proved.
Note: Whenever you get these types of questions the key concept of solving is you have to proceed from that result which is given in hint and use what is given in question and then use trigonometric results like $\left( {1 + \cos \theta = 2{{\cos }^2}\dfrac{\theta }{2}} \right)$ to proceed further and use basic math to get an answer.
Complete step-by-step answer:
Using the formula
$\left| {\vec A \pm \vec B} \right| = \sqrt {{{\left| {\vec A} \right|}^2} + {{\left| {\vec B} \right|}^2} \pm 2\vec A\vec B\cos \theta } $
Put A=B=1 because of unit vectors.
$\left| {\hat a + \hat b} \right| = \sqrt {1 + 1 + 2\cos \theta } = \sqrt {2\left( {1 + \cos \theta } \right)} = \sqrt {4{{\cos }^2}\dfrac{\theta }{2}} $ $\left( {\because \left( {1 + \cos \theta = 2{{\cos }^2}\dfrac{\theta }{2}} \right)} \right)$
$\left| {\hat a - \hat b} \right| = \sqrt {1 + 1 - 2\cos \theta } = \sqrt {2\left( {1 - \cos \theta } \right)} = \sqrt {4{{\sin }^2}\dfrac{\theta }{2}} $$\left( {\because \left( {1 + \sin \theta = 2{{\sin }^2}\dfrac{\theta }{2}} \right)} \right)$
So we have to find
$\dfrac{{\left| {\hat a - \hat b} \right|}}{{\left| {\hat a + \hat b} \right|}} = \dfrac{{\sqrt {4{{\sin }^2}\dfrac{\theta }{2}} }}{{\sqrt {4{{\cos }^2}\dfrac{\theta }{2}} }} = \tan \dfrac{\theta }{2}$
Hence proved.
Note: Whenever you get these types of questions the key concept of solving is you have to proceed from that result which is given in hint and use what is given in question and then use trigonometric results like $\left( {1 + \cos \theta = 2{{\cos }^2}\dfrac{\theta }{2}} \right)$ to proceed further and use basic math to get an answer.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

