If in two circles, arcs of the same length subtend angles \[{60^0}\] and \[{75^0}\] at the Centre, find the ratio of their radii.
Answer
Verified
471.6k+ views
Hint:
As we know that the arc length for a circle which subtend the angle x at Centre is given by, \[l = rx\] where x is given in radian and so as given that the above two given arc lengths are same so put the given angles in radians and equate them. Hence, from there we can obtain the ratio oF radii of both the circles.
Complete step by step solution:
As we know that the arc length for a circle which subtend the angle x at Centre is given by, \[l = rx\] where x is given in radian and so as given that the above two given arc lengths are same so put the given angles in radians and equate them. Hence, from there we can obtain the ratio oF radii of both the circles.
Complete step by step solution:
As we know that arcs lengths are same and subtends angles \[{60^0}\] and \[{75^0}\] at the Centre
As we know that arc length \[l = r\theta \]
Converting the given angles into radian as,
For \[{60^0}\] ,
\[\theta = 60 \times \dfrac{\pi }{{180}} = \dfrac{\pi }{3}\]
Similarly, for \[{75^0}\] we get,
\[\theta = 75 \times \dfrac{\pi }{{180}} = \dfrac{{5\pi }}{{12}}\]
Now as arc lengths are equal so we get,
\[{l_1} = {l_2}\]
On substituting the above equation we get,
\[{r_1}{\theta _1} = {r_2}{\theta _2}\]
Now, as we need the ratio of the radii so we get,
\[\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{{{\theta _2}}}{{{\theta _1}}}\]
On putting the value of above obtained angle in radians we get,
\[\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{{\dfrac{{5\pi }}{{12}}}}{{\dfrac{\pi }{3}}}\]
Hence, on simplifying above equation we get,
\[\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{{\dfrac{5}{{12}}}}{{\dfrac{1}{3}}}\]
On calculating above ratio we get,
\[\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{5}{4}\]
Hence, above is our required answer.
Note:
Arc length is the distance between two points along a section of a curve. Determining the length of an irregular arc segment is also called rectification of a curve. The advent of infinitesimal calculus led to a general formula that provides closed-form solutions in some cases. Substitute the value and solve the above equation carefully so that without any mistake the correct answer can be calculated.
Converting the given angles into radian as,
For \[{60^0}\] ,
\[\theta = 60 \times \dfrac{\pi }{{180}} = \dfrac{\pi }{3}\]
Similarly, for \[{75^0}\] we get,
\[\theta = 75 \times \dfrac{\pi }{{180}} = \dfrac{{5\pi }}{{12}}\]
Now as arc lengths are equal so we get,
\[{l_1} = {l_2}\]
On substituting the above equation we get,
\[{r_1}{\theta _1} = {r_2}{\theta _2}\]
Now, as we need the ratio of the radii so we get,
\[\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{{{\theta _2}}}{{{\theta _1}}}\]
On putting the value of above obtained angle in radians we get,
\[\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{{\dfrac{{5\pi }}{{12}}}}{{\dfrac{\pi }{3}}}\]
Hence, on simplifying above equation we get,
\[\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{{\dfrac{5}{{12}}}}{{\dfrac{1}{3}}}\]
On calculating above ratio we get,
\[\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{5}{4}\]
Hence, above is our required answer.
Note:
Arc length is the distance between two points along a section of a curve. Determining the length of an irregular arc segment is also called rectification of a curve. The advent of infinitesimal calculus led to a general formula that provides closed-form solutions in some cases. Substitute the value and solve the above equation carefully so that without any mistake the correct answer can be calculated.
Watch videos on
If in two circles, arcs of the same length subtend angles \[{60^0}\] and \[{75^0}\] at the Centre, find the ratio of their radii.
Trigonometric Functions Class 11 NCERT EXERCISE 3.1 (Question 6) | Class 11 Chapter 3 | Abhishek Sir
Subscribe
Share
likes
38 Views
1 year ago
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE