
If α = $\int\limits_{0}^{1}{({{e}^{(9x+3{{\tan }^{-1}}x)}})}\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx,$ where ${{\tan }^{-1}}x$ takes only principal values, then the value of $\left( {{\log }_{e}}|1+a|-\dfrac{3\pi }{4} \right)$ is
Answer
575.1k+ views
Hint: Now we have been given with α = $\int\limits_{0}^{1}{({{e}^{(9x+3{{\tan }^{-1}}x)}})}\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx,$ to solve this integral we will substitute $9x+3{{\tan }^{-1}}x$ as t and solve it by substituting method. Once we find the value of α we will substitute the value of α in $\left( {{\log }_{e}}|1+a|-\dfrac{3\pi }{4} \right)$ and find the solution.
Complete step by step answer:
Now consider the integral α = $\int\limits_{0}^{1}{({{e}^{(9x+3{{\tan }^{-1}}x)}})}\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx,$
Now here we can see that $d({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}}$ hence somehow substitution can be used to simplify the problem.
Now let us take $9x+3{{\tan }^{-1}}x=t$ Differentiating on both side with respect to x we get
$9+3\dfrac{1}{1+{{x}^{2}}}=\dfrac{dt}{dx}$
Solving left hand side we get
$\dfrac{9+9{{x}^{2}}+3}{1+{{x}^{2}}}=\dfrac{dt}{dx}$
Hence we have
$\dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}}=\dfrac{dt}{dx}$
Taking dx on left hand side we get
$\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx=dt$
Similarly let us check the change in limit of integral
As $\displaystyle \lim_{x \to 0}9(0)+{{\tan }^{-1}}0=0$
Similarly as $\displaystyle \lim_{x \to 1}9(1)+3{{\tan }^{-1}}1=9+\dfrac{3\pi }{4}$
Now using this substitution we get in the given integration we get.
$\begin{align}
& \int\limits_{0}^{1}{({{e}^{(9x+3{{\tan }^{-1}}x)}})}\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx=\int\limits_{0}^{9+\dfrac{3\pi }{4}}{{{e}^{t}}dt} \\
& =[{{e}^{t}}]_{0}^{^{9+\dfrac{3\pi }{4}}} \\
& ={{e}^{9+\dfrac{3\pi }{4}}}-{{e}^{0}} \\
& ={{e}^{9+\dfrac{3\pi }{4}}}-1 \\
\end{align}$
Hence the value of α is equal to ${{e}^{9+\dfrac{3\pi }{4}}}-1$
Now since α = ${{e}^{9+\dfrac{3\pi }{4}}}-1$ adding 1 on both sides we get
α + 1 = ${{e}^{9+\dfrac{3\pi }{4}}}-1+1$
Hence we get the value of α + 1 = \[{{e}^{9+\dfrac{3\pi }{4}}}\]
Now taking log on both sides we get.
${{\log }_{e}}|a+1|={{\log }_{e}}{{e}^{9+\dfrac{3\pi }{4}}}$
But we know ${{\log }_{e}}{{e}^{a}}=a$ using this we get
${{\log }_{e}}|a+1|=9+\dfrac{3\pi }{4}$
Now let us subtract $\dfrac{3\pi }{4}$ on both sides.
\[\left( {{\log }_{e}}|1+a|-\dfrac{3\pi }{4} \right)=9+\dfrac{3\pi }{4}-\dfrac{3\pi }{4}=9\]
Hence we get the value of $\left( {{\log }_{e}}|1+a|-\dfrac{3\pi }{4} \right)$ = 9.
Note: Here when we use a method of substitution to integrate note that the limits of integration also change. Hence if we substitute a function f(x) as t we should change the limits of x to t by substituting the value of x in substitution. Also since we are given ${{\tan }^{-1}}x$ takes only principal values we could write ${{\tan }^{-1}}1=\dfrac{\pi }{4},{{\tan }^{-1}}0=0$
Complete step by step answer:
Now consider the integral α = $\int\limits_{0}^{1}{({{e}^{(9x+3{{\tan }^{-1}}x)}})}\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx,$
Now here we can see that $d({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}}$ hence somehow substitution can be used to simplify the problem.
Now let us take $9x+3{{\tan }^{-1}}x=t$ Differentiating on both side with respect to x we get
$9+3\dfrac{1}{1+{{x}^{2}}}=\dfrac{dt}{dx}$
Solving left hand side we get
$\dfrac{9+9{{x}^{2}}+3}{1+{{x}^{2}}}=\dfrac{dt}{dx}$
Hence we have
$\dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}}=\dfrac{dt}{dx}$
Taking dx on left hand side we get
$\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx=dt$
Similarly let us check the change in limit of integral
As $\displaystyle \lim_{x \to 0}9(0)+{{\tan }^{-1}}0=0$
Similarly as $\displaystyle \lim_{x \to 1}9(1)+3{{\tan }^{-1}}1=9+\dfrac{3\pi }{4}$
Now using this substitution we get in the given integration we get.
$\begin{align}
& \int\limits_{0}^{1}{({{e}^{(9x+3{{\tan }^{-1}}x)}})}\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx=\int\limits_{0}^{9+\dfrac{3\pi }{4}}{{{e}^{t}}dt} \\
& =[{{e}^{t}}]_{0}^{^{9+\dfrac{3\pi }{4}}} \\
& ={{e}^{9+\dfrac{3\pi }{4}}}-{{e}^{0}} \\
& ={{e}^{9+\dfrac{3\pi }{4}}}-1 \\
\end{align}$
Hence the value of α is equal to ${{e}^{9+\dfrac{3\pi }{4}}}-1$
Now since α = ${{e}^{9+\dfrac{3\pi }{4}}}-1$ adding 1 on both sides we get
α + 1 = ${{e}^{9+\dfrac{3\pi }{4}}}-1+1$
Hence we get the value of α + 1 = \[{{e}^{9+\dfrac{3\pi }{4}}}\]
Now taking log on both sides we get.
${{\log }_{e}}|a+1|={{\log }_{e}}{{e}^{9+\dfrac{3\pi }{4}}}$
But we know ${{\log }_{e}}{{e}^{a}}=a$ using this we get
${{\log }_{e}}|a+1|=9+\dfrac{3\pi }{4}$
Now let us subtract $\dfrac{3\pi }{4}$ on both sides.
\[\left( {{\log }_{e}}|1+a|-\dfrac{3\pi }{4} \right)=9+\dfrac{3\pi }{4}-\dfrac{3\pi }{4}=9\]
Hence we get the value of $\left( {{\log }_{e}}|1+a|-\dfrac{3\pi }{4} \right)$ = 9.
Note: Here when we use a method of substitution to integrate note that the limits of integration also change. Hence if we substitute a function f(x) as t we should change the limits of x to t by substituting the value of x in substitution. Also since we are given ${{\tan }^{-1}}x$ takes only principal values we could write ${{\tan }^{-1}}1=\dfrac{\pi }{4},{{\tan }^{-1}}0=0$
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

Sketch the electric field lines in case of an electric class 12 physics CBSE

