
If α = $\int\limits_{0}^{1}{({{e}^{(9x+3{{\tan }^{-1}}x)}})}\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx,$ where ${{\tan }^{-1}}x$ takes only principal values, then the value of $\left( {{\log }_{e}}|1+a|-\dfrac{3\pi }{4} \right)$ is
Answer
583.2k+ views
Hint: Now we have been given with α = $\int\limits_{0}^{1}{({{e}^{(9x+3{{\tan }^{-1}}x)}})}\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx,$ to solve this integral we will substitute $9x+3{{\tan }^{-1}}x$ as t and solve it by substituting method. Once we find the value of α we will substitute the value of α in $\left( {{\log }_{e}}|1+a|-\dfrac{3\pi }{4} \right)$ and find the solution.
Complete step by step answer:
Now consider the integral α = $\int\limits_{0}^{1}{({{e}^{(9x+3{{\tan }^{-1}}x)}})}\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx,$
Now here we can see that $d({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}}$ hence somehow substitution can be used to simplify the problem.
Now let us take $9x+3{{\tan }^{-1}}x=t$ Differentiating on both side with respect to x we get
$9+3\dfrac{1}{1+{{x}^{2}}}=\dfrac{dt}{dx}$
Solving left hand side we get
$\dfrac{9+9{{x}^{2}}+3}{1+{{x}^{2}}}=\dfrac{dt}{dx}$
Hence we have
$\dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}}=\dfrac{dt}{dx}$
Taking dx on left hand side we get
$\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx=dt$
Similarly let us check the change in limit of integral
As $\displaystyle \lim_{x \to 0}9(0)+{{\tan }^{-1}}0=0$
Similarly as $\displaystyle \lim_{x \to 1}9(1)+3{{\tan }^{-1}}1=9+\dfrac{3\pi }{4}$
Now using this substitution we get in the given integration we get.
$\begin{align}
& \int\limits_{0}^{1}{({{e}^{(9x+3{{\tan }^{-1}}x)}})}\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx=\int\limits_{0}^{9+\dfrac{3\pi }{4}}{{{e}^{t}}dt} \\
& =[{{e}^{t}}]_{0}^{^{9+\dfrac{3\pi }{4}}} \\
& ={{e}^{9+\dfrac{3\pi }{4}}}-{{e}^{0}} \\
& ={{e}^{9+\dfrac{3\pi }{4}}}-1 \\
\end{align}$
Hence the value of α is equal to ${{e}^{9+\dfrac{3\pi }{4}}}-1$
Now since α = ${{e}^{9+\dfrac{3\pi }{4}}}-1$ adding 1 on both sides we get
α + 1 = ${{e}^{9+\dfrac{3\pi }{4}}}-1+1$
Hence we get the value of α + 1 = \[{{e}^{9+\dfrac{3\pi }{4}}}\]
Now taking log on both sides we get.
${{\log }_{e}}|a+1|={{\log }_{e}}{{e}^{9+\dfrac{3\pi }{4}}}$
But we know ${{\log }_{e}}{{e}^{a}}=a$ using this we get
${{\log }_{e}}|a+1|=9+\dfrac{3\pi }{4}$
Now let us subtract $\dfrac{3\pi }{4}$ on both sides.
\[\left( {{\log }_{e}}|1+a|-\dfrac{3\pi }{4} \right)=9+\dfrac{3\pi }{4}-\dfrac{3\pi }{4}=9\]
Hence we get the value of $\left( {{\log }_{e}}|1+a|-\dfrac{3\pi }{4} \right)$ = 9.
Note: Here when we use a method of substitution to integrate note that the limits of integration also change. Hence if we substitute a function f(x) as t we should change the limits of x to t by substituting the value of x in substitution. Also since we are given ${{\tan }^{-1}}x$ takes only principal values we could write ${{\tan }^{-1}}1=\dfrac{\pi }{4},{{\tan }^{-1}}0=0$
Complete step by step answer:
Now consider the integral α = $\int\limits_{0}^{1}{({{e}^{(9x+3{{\tan }^{-1}}x)}})}\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx,$
Now here we can see that $d({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}}$ hence somehow substitution can be used to simplify the problem.
Now let us take $9x+3{{\tan }^{-1}}x=t$ Differentiating on both side with respect to x we get
$9+3\dfrac{1}{1+{{x}^{2}}}=\dfrac{dt}{dx}$
Solving left hand side we get
$\dfrac{9+9{{x}^{2}}+3}{1+{{x}^{2}}}=\dfrac{dt}{dx}$
Hence we have
$\dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}}=\dfrac{dt}{dx}$
Taking dx on left hand side we get
$\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx=dt$
Similarly let us check the change in limit of integral
As $\displaystyle \lim_{x \to 0}9(0)+{{\tan }^{-1}}0=0$
Similarly as $\displaystyle \lim_{x \to 1}9(1)+3{{\tan }^{-1}}1=9+\dfrac{3\pi }{4}$
Now using this substitution we get in the given integration we get.
$\begin{align}
& \int\limits_{0}^{1}{({{e}^{(9x+3{{\tan }^{-1}}x)}})}\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx=\int\limits_{0}^{9+\dfrac{3\pi }{4}}{{{e}^{t}}dt} \\
& =[{{e}^{t}}]_{0}^{^{9+\dfrac{3\pi }{4}}} \\
& ={{e}^{9+\dfrac{3\pi }{4}}}-{{e}^{0}} \\
& ={{e}^{9+\dfrac{3\pi }{4}}}-1 \\
\end{align}$
Hence the value of α is equal to ${{e}^{9+\dfrac{3\pi }{4}}}-1$
Now since α = ${{e}^{9+\dfrac{3\pi }{4}}}-1$ adding 1 on both sides we get
α + 1 = ${{e}^{9+\dfrac{3\pi }{4}}}-1+1$
Hence we get the value of α + 1 = \[{{e}^{9+\dfrac{3\pi }{4}}}\]
Now taking log on both sides we get.
${{\log }_{e}}|a+1|={{\log }_{e}}{{e}^{9+\dfrac{3\pi }{4}}}$
But we know ${{\log }_{e}}{{e}^{a}}=a$ using this we get
${{\log }_{e}}|a+1|=9+\dfrac{3\pi }{4}$
Now let us subtract $\dfrac{3\pi }{4}$ on both sides.
\[\left( {{\log }_{e}}|1+a|-\dfrac{3\pi }{4} \right)=9+\dfrac{3\pi }{4}-\dfrac{3\pi }{4}=9\]
Hence we get the value of $\left( {{\log }_{e}}|1+a|-\dfrac{3\pi }{4} \right)$ = 9.
Note: Here when we use a method of substitution to integrate note that the limits of integration also change. Hence if we substitute a function f(x) as t we should change the limits of x to t by substituting the value of x in substitution. Also since we are given ${{\tan }^{-1}}x$ takes only principal values we could write ${{\tan }^{-1}}1=\dfrac{\pi }{4},{{\tan }^{-1}}0=0$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

