Answer
Verified
492.6k+ views
Hint- Here, we will proceed by using the important inverse trigonometric identity which is \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\cos }^{ - 1}}x} \right) = \dfrac{\pi }{2}\] where x is any value once in such a way that the given equation reduces to an equation from where the value of the required expression can be found.
Complete step-by-step answer:
Given, \[\left( {{{\cos }^{ - 1}}x} \right) + \left( {{{\cos }^{ - 1}}y} \right) = 2\pi {\text{ }} \to {\text{(1)}}\]
We have to find the value of the expression \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y} \right)\]
According to inverse trigonometric identities, we know that the sum of the inverse sine trigonometric function of any value with the inverse cosine trigonometric function of the same value will always be equal to $\dfrac{\pi }{2}$
For any value x, \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\cos }^{ - 1}}x} \right) = \dfrac{\pi }{2}\]
Taking \[\left( {{{\sin }^{ - 1}}x} \right)\] from the LHS of the above equation to the RHS of the above equation, we get
\[\left( {{{\cos }^{ - 1}}x} \right) = \dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}x} \right){\text{ }} \to {\text{(2)}}\]
For any value y, \[\left( {{{\sin }^{ - 1}}y} \right) + \left( {{{\cos }^{ - 1}}y} \right) = \dfrac{\pi }{2}\]
Taking \[\left( {{{\sin }^{ - 1}}y} \right)\] from the LHS of the above equation to the RHS of the above equation, we get
\[\left( {{{\cos }^{ - 1}}y} \right) = \dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}y} \right){\text{ }} \to {\text{(3)}}\]
By substituting the values of \[\left( {{{\cos }^{ - 1}}x} \right)\] and \[\left( {{{\cos }^{ - 1}}y} \right)\] from the equations (2) and (3) in the equations (1), we get
\[
\Rightarrow \dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}x} \right) + \dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}y} \right) = 2\pi \\
\Rightarrow \pi - \left( {{{\sin }^{ - 1}}x} \right) - \left( {{{\sin }^{ - 1}}y} \right) = 2\pi \\
\Rightarrow \left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y} \right) = \pi - 2\pi \\
\Rightarrow \left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y} \right) = - \pi \\
\]
Therefore, the value of the required expression \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y} \right)\] is \[ - \pi \] radians.
Hence, option B is correct.
Note- Apart from the identity \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\cos }^{ - 1}}x} \right) = \dfrac{\pi }{2}\], there are two other inverse trigonometric identities of the same form which are \[\left( {{{\tan }^{ - 1}}x} \right) + \left( {{{\cot }^{ - 1}}x} \right) = \dfrac{\pi }{2}\] and \[\left( {{{\sec }^{ - 1}}x} \right) + \left( {{{\operatorname{cosec} }^{ - 1}}x} \right) = \dfrac{\pi }{2}\] for any value x. These identities can be given to convert any equation having inverse tangent and inverse secant trigonometric functions into inverse cotangent and inverse cosecant trigonometric functions respectively and its vice versa.
Complete step-by-step answer:
Given, \[\left( {{{\cos }^{ - 1}}x} \right) + \left( {{{\cos }^{ - 1}}y} \right) = 2\pi {\text{ }} \to {\text{(1)}}\]
We have to find the value of the expression \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y} \right)\]
According to inverse trigonometric identities, we know that the sum of the inverse sine trigonometric function of any value with the inverse cosine trigonometric function of the same value will always be equal to $\dfrac{\pi }{2}$
For any value x, \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\cos }^{ - 1}}x} \right) = \dfrac{\pi }{2}\]
Taking \[\left( {{{\sin }^{ - 1}}x} \right)\] from the LHS of the above equation to the RHS of the above equation, we get
\[\left( {{{\cos }^{ - 1}}x} \right) = \dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}x} \right){\text{ }} \to {\text{(2)}}\]
For any value y, \[\left( {{{\sin }^{ - 1}}y} \right) + \left( {{{\cos }^{ - 1}}y} \right) = \dfrac{\pi }{2}\]
Taking \[\left( {{{\sin }^{ - 1}}y} \right)\] from the LHS of the above equation to the RHS of the above equation, we get
\[\left( {{{\cos }^{ - 1}}y} \right) = \dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}y} \right){\text{ }} \to {\text{(3)}}\]
By substituting the values of \[\left( {{{\cos }^{ - 1}}x} \right)\] and \[\left( {{{\cos }^{ - 1}}y} \right)\] from the equations (2) and (3) in the equations (1), we get
\[
\Rightarrow \dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}x} \right) + \dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}y} \right) = 2\pi \\
\Rightarrow \pi - \left( {{{\sin }^{ - 1}}x} \right) - \left( {{{\sin }^{ - 1}}y} \right) = 2\pi \\
\Rightarrow \left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y} \right) = \pi - 2\pi \\
\Rightarrow \left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y} \right) = - \pi \\
\]
Therefore, the value of the required expression \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y} \right)\] is \[ - \pi \] radians.
Hence, option B is correct.
Note- Apart from the identity \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\cos }^{ - 1}}x} \right) = \dfrac{\pi }{2}\], there are two other inverse trigonometric identities of the same form which are \[\left( {{{\tan }^{ - 1}}x} \right) + \left( {{{\cot }^{ - 1}}x} \right) = \dfrac{\pi }{2}\] and \[\left( {{{\sec }^{ - 1}}x} \right) + \left( {{{\operatorname{cosec} }^{ - 1}}x} \right) = \dfrac{\pi }{2}\] for any value x. These identities can be given to convert any equation having inverse tangent and inverse secant trigonometric functions into inverse cotangent and inverse cosecant trigonometric functions respectively and its vice versa.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE