If \[\left( {{{\cos }^{ - 1}}x} \right) + \left( {{{\cos }^{ - 1}}y} \right) = 2\pi \], then find the value of \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y} \right)\].
$
{\text{A}}{\text{. }}\pi \\
{\text{B}}{\text{. }} - \pi \\
{\text{C}}{\text{. }}\dfrac{\pi }{2} \\
$
${\text{D}}{\text{.}}$ None of these
Answer
Verified
501.9k+ views
Hint- Here, we will proceed by using the important inverse trigonometric identity which is \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\cos }^{ - 1}}x} \right) = \dfrac{\pi }{2}\] where x is any value once in such a way that the given equation reduces to an equation from where the value of the required expression can be found.
Complete step-by-step answer:
Given, \[\left( {{{\cos }^{ - 1}}x} \right) + \left( {{{\cos }^{ - 1}}y} \right) = 2\pi {\text{ }} \to {\text{(1)}}\]
We have to find the value of the expression \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y} \right)\]
According to inverse trigonometric identities, we know that the sum of the inverse sine trigonometric function of any value with the inverse cosine trigonometric function of the same value will always be equal to $\dfrac{\pi }{2}$
For any value x, \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\cos }^{ - 1}}x} \right) = \dfrac{\pi }{2}\]
Taking \[\left( {{{\sin }^{ - 1}}x} \right)\] from the LHS of the above equation to the RHS of the above equation, we get
\[\left( {{{\cos }^{ - 1}}x} \right) = \dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}x} \right){\text{ }} \to {\text{(2)}}\]
For any value y, \[\left( {{{\sin }^{ - 1}}y} \right) + \left( {{{\cos }^{ - 1}}y} \right) = \dfrac{\pi }{2}\]
Taking \[\left( {{{\sin }^{ - 1}}y} \right)\] from the LHS of the above equation to the RHS of the above equation, we get
\[\left( {{{\cos }^{ - 1}}y} \right) = \dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}y} \right){\text{ }} \to {\text{(3)}}\]
By substituting the values of \[\left( {{{\cos }^{ - 1}}x} \right)\] and \[\left( {{{\cos }^{ - 1}}y} \right)\] from the equations (2) and (3) in the equations (1), we get
\[
\Rightarrow \dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}x} \right) + \dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}y} \right) = 2\pi \\
\Rightarrow \pi - \left( {{{\sin }^{ - 1}}x} \right) - \left( {{{\sin }^{ - 1}}y} \right) = 2\pi \\
\Rightarrow \left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y} \right) = \pi - 2\pi \\
\Rightarrow \left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y} \right) = - \pi \\
\]
Therefore, the value of the required expression \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y} \right)\] is \[ - \pi \] radians.
Hence, option B is correct.
Note- Apart from the identity \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\cos }^{ - 1}}x} \right) = \dfrac{\pi }{2}\], there are two other inverse trigonometric identities of the same form which are \[\left( {{{\tan }^{ - 1}}x} \right) + \left( {{{\cot }^{ - 1}}x} \right) = \dfrac{\pi }{2}\] and \[\left( {{{\sec }^{ - 1}}x} \right) + \left( {{{\operatorname{cosec} }^{ - 1}}x} \right) = \dfrac{\pi }{2}\] for any value x. These identities can be given to convert any equation having inverse tangent and inverse secant trigonometric functions into inverse cotangent and inverse cosecant trigonometric functions respectively and its vice versa.
Complete step-by-step answer:
Given, \[\left( {{{\cos }^{ - 1}}x} \right) + \left( {{{\cos }^{ - 1}}y} \right) = 2\pi {\text{ }} \to {\text{(1)}}\]
We have to find the value of the expression \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y} \right)\]
According to inverse trigonometric identities, we know that the sum of the inverse sine trigonometric function of any value with the inverse cosine trigonometric function of the same value will always be equal to $\dfrac{\pi }{2}$
For any value x, \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\cos }^{ - 1}}x} \right) = \dfrac{\pi }{2}\]
Taking \[\left( {{{\sin }^{ - 1}}x} \right)\] from the LHS of the above equation to the RHS of the above equation, we get
\[\left( {{{\cos }^{ - 1}}x} \right) = \dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}x} \right){\text{ }} \to {\text{(2)}}\]
For any value y, \[\left( {{{\sin }^{ - 1}}y} \right) + \left( {{{\cos }^{ - 1}}y} \right) = \dfrac{\pi }{2}\]
Taking \[\left( {{{\sin }^{ - 1}}y} \right)\] from the LHS of the above equation to the RHS of the above equation, we get
\[\left( {{{\cos }^{ - 1}}y} \right) = \dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}y} \right){\text{ }} \to {\text{(3)}}\]
By substituting the values of \[\left( {{{\cos }^{ - 1}}x} \right)\] and \[\left( {{{\cos }^{ - 1}}y} \right)\] from the equations (2) and (3) in the equations (1), we get
\[
\Rightarrow \dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}x} \right) + \dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}y} \right) = 2\pi \\
\Rightarrow \pi - \left( {{{\sin }^{ - 1}}x} \right) - \left( {{{\sin }^{ - 1}}y} \right) = 2\pi \\
\Rightarrow \left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y} \right) = \pi - 2\pi \\
\Rightarrow \left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y} \right) = - \pi \\
\]
Therefore, the value of the required expression \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y} \right)\] is \[ - \pi \] radians.
Hence, option B is correct.
Note- Apart from the identity \[\left( {{{\sin }^{ - 1}}x} \right) + \left( {{{\cos }^{ - 1}}x} \right) = \dfrac{\pi }{2}\], there are two other inverse trigonometric identities of the same form which are \[\left( {{{\tan }^{ - 1}}x} \right) + \left( {{{\cot }^{ - 1}}x} \right) = \dfrac{\pi }{2}\] and \[\left( {{{\sec }^{ - 1}}x} \right) + \left( {{{\operatorname{cosec} }^{ - 1}}x} \right) = \dfrac{\pi }{2}\] for any value x. These identities can be given to convert any equation having inverse tangent and inverse secant trigonometric functions into inverse cotangent and inverse cosecant trigonometric functions respectively and its vice versa.
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
How do you convert from joules to electron volts class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE
On what factors does the internal resistance of a cell class 12 physics CBSE
A 24 volt battery of internal resistance 4 ohm is connected class 12 physics CBSE